Как рассчитать отопительный котел. Как подобрать котел для отопления частного дома по мощности. Какой запас мощности должен быть у газового котла


В любой системе отопления, использующей жидкий теплоноситель, ее «сердцем» является котел. Именно здесь происходит преобразование энергетического потенциала топлива (твёрдого, газообразного, жидкого) или электричества в тепло, которое передаётся теплоносителю, и уже им разносится по всем отапливаемым помещениям дома или квартиры. Естественно, возможности любого котла не беспредельны, то есть ограничены его техническо-эксплуатационными характеристиками, указанными в паспорте изделия.

Одной из ключевых характеристик является тепловая мощность агрегата. Проще говоря, он должен обладать способностью выработать в единицу времени такое количество тепла, которого было бы достаточно для полноценного обогрева всех помещений дома или квартиры. Подбор подходящей модели «на глаз» или по каким-то уж чересчур обобщенным понятиям может привести к ошибке в ту или иную сторону. Поэтому в данной публикации постараемся предложить читателю хоть и не профессиональный, но все же обладающий достаточно высокой степенью точности алгоритм, как рассчитать мощность котла для отопления дома.

Банальный вопрос – для чего знать необходимую мощность котла

Несмотря на то что вопрос действительно кажется риторическим, все же видится необходимость дать парочку пояснений. Дело в том, что некоторые хозяева домов или квартир все же умудряются допускать ошибки, впадая в ту или иную крайность. То есть приобретая оборудование или заведомо недостаточной тепловой производительности, в надежде сэкономить, или сильно завышенной, чтобы, по их мнению, гарантировано, с большим запасом обеспечить себя теплом в любой ситуации.

И то, и другое – совершенно неправильно, и негативно сказывается как на обеспечении комфортных условий проживания, так и на долговечности самого оборудования.

  • Ну, с недостаточностью теплотворной способности все более-менее ясно. При наступлении зимних холодов котел станет работать на полную свою мощность, и не факт, что при этом в помещениях будет комфортный микроклимат. Значит, придется «нагонять тепло» с помощью электрический обогревательных приборов, что повлечет лишние немалые расходы. А сам котел, функционирующий на пределе своих возможностей, вряд ли протянет долго. В любом случае уже через год-другой владельцы жилья однозначно осознают необходимость замены агрегата на более мощный. Так или иначе, цена ошибки получается весьма впечатляющей.

  • Ну а почему бы не приобрести котел с большим запасом, чем же это может помешать? Да, безусловно, качественный обогрев помещений будет обеспечен. Но теперь перечислим «минусы» такого подхода:

Во-первых, котел большей мощности сам по себе может стоить значительно дороже, и назвать такую покупку рациональной – сложно.

Во-вторых, с возрастанием мощности практически всегда увеличиваются габариты и масса агрегата. Это ненужные сложности при установке, «украденное» пространство, что бывает особо важно, если котел планируется разместить, например, на кухне или в другом помещении жилой зоны дома.

В-третьих, можно столкнуться с неэкономичностью работы системы отопления – часть затраченных энергоресурсов будет расходоваться, по сути, впустую.

В-четвертых, избыточная мощность – это регулярные длительные отключения котла, которые, кроме того, сопровождаются остыванием дымохода и, соответственно, обильным образованием конденсата.

В-пятых, если мощное оборудование никогда не нагружается должным образом, на пользу ему это не идет. Подобное утверждение может показаться парадоксальным, но так оно и есть – износ становится выше, длительность безаварийной эксплуатации существенно снижается.

Цены на популярные отопительные котлы

Избыток мощности котла будет уместен лишь в том случае, если к нему планируется подключить систему подогрева воды для хозяйственных нужд – бойлер косвенного нагрева. Ну или тогда, когда в перспективе предполагается расширение системы отопления. Например, в планах хозяев – возведение жилой пристройки к дому.

Способы проведения расчета необходимой мощности котла

По правде говоря, проведение теплотехнических расчетов всегда лучше доверять специалистам – слишком уж много нюансов приходится принимать во внимание. Но, понятно, что такие услуги оказываются не бесплатно, поэтому многие хозяева предпочитают взять на себя ответственность за выбор параметров котельного оборудования.

Давайте посмотрим, какие способы расчета тепловой мощности чаще всего предлагаются на просторах интернета. Но для начала уточним вопрос, что конкретно должно влиять на это параметр. Так проще будет разобраться в достоинствах и недостатках каждого из предлагаемых методов расчета.

Какие принципы являются ключевыми при проведении расчетов

Итак, перед системой отопления стоят две главных задачи. Сразу же уточним, что между ними нет четкого разделения – напротив, наблюдается очень тесная взаимосвязь.

  • Первая – это создание и поддержание в помещениях комфортной для проживания температуры. Причем этот уровень нагрева должен распространяться на весь объем помещения. Безусловно, в силу физических законов, температурная градация по высоте все равно неизбежна, но она не должна сказываться на ощущении комфортности пребывания в комнате. Получается, что должна быть в состоянии прогреть определённый объем воздуха.

Степень комфортности температуры, безусловно – величина субъективная, то есть разные люди ее могут оценивать по-своему. Но все же принято считать, что этот показатель находится в области +20 ÷ 22 °С. Обычно именно такой температурой и оперируют при проведении теплотехнических расчетов.

Об этом же говорят и нормативы, установленные действующими ГОСТ, СНиП и СанПиН. Вот, например, в таблице ниже приведены требования ГОСТ 30494-96:

Тип помещения Уровень температуры воздуха, °С
оптимальный допустимый
Жилые помещения 20÷22 18÷24
Жилые помещения для регионов с минимальными зимними температурами от - 31 °С и ниже 21÷23 20÷24
Кухня 19÷21 18÷26
Туалет 19÷21 18÷26
Ванная, совмещенный санузел 24÷26 18÷26
Кабинет, помещения для отдыха и учебных занятий 20÷22 18÷24
Коридор 18÷20 16÷22
Вестибюль, лестничная клетка 16÷18 14÷20
Кладовые 16÷18 12÷22
Жилые помещения (остальные - не нормируются) 22÷25 20÷28
  • Вторая задача – это постоянная компенсация возможных тепловых потерь. Создать «идеальный» дом, в которой полностью бы отсутствовали утечки тепла - проблема из проблем, практически нерешаемая. Можно лишь свести их к предельному минимуму. А путями утечки в той или иной мере становятся практически все элементы конструкции здания.

Элемент конструкции здания Примерная доля от общих тепловых потерь
Фундамент, цоколь, полы первого этада (по грунту или над неотапливаемым повалом) от 5 до 10%
Стыки строительных конструкций от 5 до 10%
Участки прохода инженерных коммуникаций через сроительные консрукции (трубы канализации, водопровода, газоснабжения, электрические или коммункационные кабели и т.п.) до 5%
Внешние стены, в зависимости от уровня термоизоляции от 20 до 30%
Окна и двери на улицу около 20÷25%, из них порядка половины - из-за недостаточной герметизации коробок, плохой подгонки рам или полотен
Крыша до 20%
Дымоход и вентиляция до 25÷30%

Для чего давались все эти довольно пространные объяснения? А лишь для того, чтобы у читателя возникла полная ясность, что при расчетах волей-неволей необходимо учитывать оба направления. То есть и «геометрию» отапливаемых помещений дома, и примерный уровень тепловых потерь из них. А количество этих утечек тепла, в свою очередь, зависит еще от целого ряда факторов. Это и разница температур на улице и в доме, и качество термоизоляции, и особенности всего дома в целом и расположения каждого из его помещений, и другие критерии оценки.

Возможно, вас заинтересует информация о том, какие подходят

Теперь, вооружившись этими предварительными познаниями, перейдем к рассмотрению различных методов расчета необходимой тепловой мощности.

Расчет мощности по площади отапливаемых помещений

Предлагается исходить их условного соотношения, что для качественного обогрева одного квадратного метра площади помещения необходим расходовать 100 Вт тепловой энергии. Таким образом, поможет высчитать, какая :

Q = Sобщ / 10

Q - требуемая тепловая мощность системы отопления, выраженная в киловаттах.

Sобщ - суммарная площадь отапливаемых помещений дома, квадратных метров.

Делаются, правда, оговорки:

  • Первая - высота потолка помещения в среднем должна составлять 2.7 метра, допускается диапазон от 2,5 до 3 метров.
  • Вторая - можно сделать поправку на регион проживания, то есть принять не жесткую норму 100 Вт/м², а «плавающую»:

То есть формула при этом примет несколько иной вид:

Q = Sобщ × Qуд / 1000

Qуд - взятое из показанной выше таблицы значение удельной тепловой мощности на квадратный метр площади.

  • Третья - расчет справедлив для домов или квартир со средней степенью утепления ограждающих конструкций.

Тем не менее, несмотря на упомянутые оговорки, такой расчет никак нельзя назвать точным. Согласитесь, что он в большей мере зиждется на «геометрии» дома и его помещений. А вот теплопотери практически в расчет не принимаются, если не считать довольно-таки «размытых» диапазонов удельной тепловой мощности по регионам (которые тоже с весьма туманными границами), и ремарки, что стены должны иметь среднюю степень утепления.

Но что бы то ни было, такой метод все же пользуется популярностью, именно за свою простоту.

Понятно, что к полученному расчетному значению необходимо добавить эксплуатационный резерв мощности котла. Чрезмерно завышать его не следует – специалисты советуют останавливаться на диапазоне от 10 до 20%. Это, кстати, касается всех методов расчета мощности отопительного оборудования, о которых речь пойдет ниже.

Расчет необходимой тепловой мощности по объему помещений

По большому счету, этот способ расчета во многом повторяет предыдущей. Правда, исходной величиной здесь уже выступает не площадь, а объем – по сути, та же площадь, но умноженная еще на высоту потолков.

А нормы удельной тепловой мощности здесь принимаются такие:

  • для кирпичных домов – 34 Вт/м³;
  • для панельных домов – 41 Вт/м³.

Даже исходя из предлагаемых значений (из их формулировки) становится понятно, что эти нормы были установлены для многоквартирных домов, и применяются в основном для расчета потребности в тепловой энергии для помещений, подключенных к центральной системе отделения или к автономному котельному пункту.

Совершенно очевидно, что во главу угла вновь ставится «геометрия». А вся система учета тепловых потерь сводится лишь к различиям в теплопроводности кирпичных и панельных стен.

Одним словом, точностью такой подход к расчетам тепловой мощности тоже не отличается.

Алгоритм расчета с учетом особенностей дома и его отдельных помещений

Описание методики расчета

Итак, предложенные выше методы дают лишь обще представление о необходимом количестве тепловой энергии для отопления дома или квартиры. Уязвимое место у них общее – практически полное игнорирование возможных тепловых потерь, которые рекомендуется считать «среднестатистическими».

Но вполне возможно провести и более точные вычисления. В этом поможет предлагаемый алгоритм расчета, который воплощен, кроме того, в форме онлайн-калькулятора, который будет предложен ниже. Просто перед началом вычислений имеет смысл пошагово рассмотреть сам принцип их проведения.

Прежде всего – важное замечание. Предлагаемая методика предполагает оценку не всего дома или квартиры по общей площади или объему, а каждого отапливаемого помещения в отдельности. Согласитесь, что комнаты равной площади, но различающиеся, скажем, количеством внешних стен, потребуют и разное количество тепла. Нельзя поставить знак равенства между помещениями, имеющими существенную разницу в количестве и площади окон. И таких критериев оценки каждой из комнат – немало.

Так что будет правильнее рассчитать необходимую мощность для каждого из помещений по отдельности. Ну а потом простое суммирование полученных значений приведет нас к искомому показателю общей тепловой мощности для всей системы отопления. То есть, по сути, для ее «сердца» — котла.

Еще одно замечание. Предлагаемый алгоритм не претендует на «научность», то есть он напрямую не основывается на каких-то конкретных формулах, установленных СНиП или иными руководящими документами. Однако, он проверен практикой применения и показывает результаты с высокой степенью точности. Различия с итогами профессионально проведенных теплотехнических расчетов – минимальны, и никак не сказываются на правильном выборе оборудования по его номинальной тепловой мощности.

«Архитектура» расчета такова - берется базовое, уде упомянутое выше значение удельной тепловой мощности, равное 100 Вт/м², а затем вводится целая череда поправочных коэффициентов, в той или иной степени отражающих количество теплопотерь конкретного помещения.

Если это выразить математической формулой, то получится примерно так:

= 0.1 × Sк × k1 × k2 × k3 × k4 × k5 × k6 × k7 × k8 × k9× k10 × k11

- искомая тепловая мощность, необходимая для полноценного отопления конкретной комнаты

0.1 - перевод 100 Вт в 0.1 кВт, просто для удобства получения результата именно в киловаттах.

- площадь помещения.

k1 ÷ k11 - поправочные коэффициенты для корректировки результата с учетом особенностей помещения.

С определением площади помещения, надо полагать, проблем быть не должно. Так что сразу перейдем к подробному рассмотрению поправочных коэффициентов.

  • k1 — коэффициент, учитывающий высоту потолков в комнате.

Понятно, что высота потолков напрямую влияет на объем воздуха, который должна прогреть система отопления. Для расчета предлагается принять следующие значения поправочного коэффициента:

  • k2 — коэффициент, учитывающий количество стен помещения, контактирующих с улицей.

Чем больше площадь контакта с внешней средой, тем выше уровень тепловых потерь. Каждый знает, что в угловой комнате всегда бывает значительно прохладнее, нежели в имеющей всего одну внешнюю стену. А некоторые помещения дома или квартиры и вовсе могут быть внутренними, не имеющими контакта с улицей.

По уму, конечно, следует принимать не только количество внешних стен, но и их площадь. Но у нас расчет все же упрощенный, поэтому ограничимся только введением поправочного коэффициента.

Коэффициенты для различных случаев приведены в таблице ниже:

Случай, когда все четыре стены внешние – не рассматриваем. Это уже не жилой дом, а просто какой-то сарай.

  • k3 — коэффициент, принимающий в расчет положение внешних стен относительно сторон света.

Даже зимой не стоит сбрасывать со счетов возможное воздействие энергии солнечных лучей. В ясный день они проникают через окна в помещения, включаясь тем самым в общую подачу тепла. Кроме того, и стены получают заряд солнечной энергии, что ведет к уменьшению общего количества теплопотерь через них. Но все это справедливо только лишь для тех стен, которые «видят» Солнце. На северной и северо-восточной стороне дома такого влияния не оказывается, на что тоже можно сделать определённую поправку.

Значения корректировочного коэффициента на стороны света – в таблице ниже:

  • k4 — коэффициент, учитывающий направление зимних ветров.

Возможно, эта поправка и не является обязательной, но для домов, расположенных на открытой местности, имеет смысл принять в расчет и ее.

Возможно вас заинтересует информация о том, что собой представляют

Практически в любой местности наблюдается преобладание зимних ветров – это еще называется «розой ветров». Такая схема в обязательном порядке есть у местных метеорологов – она составляется по результатам многолетних наблюдений за погодой. Довольно часто и сами местные жители прекрасно осведомлены, какие ветра чаще всего их беспокоят зимой.

И если стена помещения размещена с наветренной стороны, и не защищена какими-то естественными или искусственными преградами от ветра, то она будет выстуживаться значительно сильнее. То есть и тепловые потери помещения возрастают. В меньшей степени это будет выражено у стены, расположенной параллельно направлению ветра, в минимальной – находящейся с подветренной стороны.

Если нет желания «заморачиваться» с этим фактором, или же отсутствует достоверная информация о зимней розе ветров, то можно оставить коэффициент, равный единице. Или же, наоборот, приять его максимальным, на всякий случай, то есть для наиболее неблагоприятных условий.

Значения этого поправочного коэффициента – в таблице:

  • k5 — коэффициент, учитывающий уровень зимних температур в регионе проживания.

Если проводить теплотехнические расчеты по всем правилам, то оценку тепловых потерь проводят с учетом разницы температур в помещении и на улице. Понятно, что чем холоднее по климатическим условиям регион, тем больше тепла требуется подавать в системе отопления.

В нашем алгоритме это тоже будет в определенной степени учтено, но с допустимым упрощением. В зависимости от уровня минимальных зимних температур, приходящихся на самую холодную декаду, выбирается поправочный коэффициент k5.

Здесь будет уместным сделать одно замечание. Расчет будет корректным, если принимаются во внимание температуры, которые для данного региона считаются нормой. Нет никакой необходимости вспоминать аномальные морозы, которые случились, скажем, несколько лет назад (и оттого, кстати, и запомнились). То есть должна выбираться самая низкая, но нормальная для данной местности температура.

  • k6 – коэффициент, принимающий во внимание качество термоизоляции стен.

Вполне понятно, что чем эффективнее система утепления стен, тем меньше будет уровень тепловых потерь. В идеале, к которому следует стремиться, термоизоляция вообще должна быть полноценной, проведенной на основании выполненных теплотехнических расчетов, с учетом климатический условий региона и особенностей конструкции дома.

При расчете требуемой тепловой мощности системы отопления следует учесть и имеющуюся термоизоляцию стен. Предлагается такая градация поправочных коэффициентов:

Недостаточная степень термоизоляции или вообще полное ее отсутствие, по идее, вовсе не должны наблюдаться в жилом доме. В противном случае система отопления будет очень затратной, да еще и без гарантии создания действительно комфортных условий проживания.

Возможно, вас заинтересует информация о том, в системе отопления

Если читатель желает самостоятельно оценить уровень термоизоляции своего жилья, он может воспользоваться информацией и калькулятором, которые размещены в последнем разделе настоящей публикации.

  • k7 и k8– коэффициенты, учитывающие теплопотери через пол и потолок.

Следующие два коэффициента схожи – их введением в расчет принимается во внимание примерный уровень тепловых потерь через полы и потолки помещений. Подробно здесь расписывать незачем – и возможные варианты, и соответствующие им значения этих коэффициентов показаны в таблицах:

Для начала – коэффициент k7, корректирующий результат в зависимости от особенностей пола:

Теперь – коэффициент k8, вносящий поправку на соседство сверху:

  • k9 – коэффициент, учитывающий качество окон в помещении.

Здесь тоже все просто – чем качественнее окна, тем меньше теплопотери через них. Старые деревянные рамы, как правило, не отличаются хорошими термоизоляционными характеристиками. Лучше с этим дело обстоит у современных оконных систем, оснащенных стеклопакетами. Но и у них может быть определённая градация – по количество камер в стеклопакете и по другим особенностям конструкции.

Для нашего упрощенного расчета можно применить следующие значения коэффициента k9:

  • k10 – коэффициент, вносящий поправку на площадь остекления комнаты.

Качество окон еще полностью не раскрывает всех объемов возможных теплопотерь через них. Очень большое значение имеет площадь остекления. Согласитесь, сложно сравнивать маленькое окошко и огромное панорамное окно чуть не во всю стену.

Чтобы внести корректировку и на этот параметр, для начала следует рассчитать так называемый коэффициент остекления помещения. Это несложно – просто находится отношение площади остекления к общей площади комнаты.

kw = sw / S

kw - коэффициент остекления помещения;

sw - суммарная площадь остекленных поверхностей, м²;

S - площадь помещения, м².

Измерить и просуммировать площадь окон сможет каждый. А затем несложно простым делением найти и искомый коэффициент остекления. А он, в свою очередь, дает возможность зайти в таблицу и определить значение поправочного коэффициента k10:

Значение коэффициента остекления kw Значение коэффициента k10
- до 0.1 0.8
- от 0.11 до 0.2 0.9
- от 0.21 до 0.3 1.0
- от 0.31 до 0.4 1.1
- от 0.41 до 0.5 1.2
- свыше 0.51 1.3
  • k11 – коэффициент, принимающий во внимание наличие дверей на улицу.

Последний из рассматриваемых коэффициентов. В помещении может быть дверь, ведущая непосредственно на улицу, на холодный балкон, в неотапливаемый коридор или подъезд и т.п. Мало того что дверь сама по себе часто является весьма серьезным «мостиком холода» - при ее регулярном открывании каждый раз в помещение будет проникать изрядный объем холодного воздуха. Стало быть, и на это фактор следует сделать поправку: подобные теплопотери, безусловно, требуют дополнительной компенсации.

Значения коэффициента k11 приведены в таблице:

Этот коэффициент стоит принимать во внимание, если дверями в зимнее время регулярно пользуются.

Возможно, вас заинтересует информация о том, что собой представляет

* * * * * * *

Итак, все поправочные коэффициенты рассмотрены. Как видите – ничего сверхсложного здесь нет, и можно смело переходить к расчетам.

Еще один совет перед началом вычислений. Все будет намного проще, если предварительно составить таблицу, в первом столбце которой последовательно указать все отпаиваемые помещения дома или квартиры. Далее, по столбцам, разместить данные, которые требуются для расчетов. Например, во втором столбце – площадь помещения, в третьем - высота потолков, в четвертом – ориентация по сторонам света – и так далее. Такую табличку составить несложно, имея перед собой план своих жилых владений. Понятно, что в последний столбец будут заноситься рассчитанные значения требуемой тепловой мощности по каждому помещению.

Таблицу можно составить в офисном приложении, или даже просто расчертить на листе бумаги. И не спешите с ней расставаться после проведения расчётов – полученные показатели тепловой мощности еще пригодятся, например, при приобретении радиаторов отопления или же электрических нагревательных приборов, используемых в качестве резервного источника тепла.

Чтобы предельно упростить читателю задачу проведения таких вычислений, ниже размещен специальный онлайн-калькулятор. С ним, при предварительно собранных в таблицу исходных данных, расчет займёт буквально считаные минуты.

Калькулятор расчета необходимой тепловой мощности для помещений дома или квартиры.

Расчет проводится для каждого помещения отдельно.
Последовательно введите запрашиваемые значения или отметьте нужные варианты в предлагаемых списках.

Нажмите «РАССЧИТАТЬ ПОТРЕБНУЮ ТЕПЛОВУЮ МОЩНОСТЬ»

Площадь помещения, м²

100 Вт на кв. м

Высота потолка в помещении

Количество внешних стен

Внешние стены смотрят на:

Положение внешней стены относительно зимней «розы ветров»

Уровень отрицательных температур воздуха в регионе в самую холодную неделю года

Оценка степени термоизоляции стен

Как уже говорилось, к полученному итоговому значению следует прибавить запас в 10 ÷ 20 процентов. Например, рассчитанная мощность составляет 9,6 кВт. Если прибавить 10%, то это получится 10,56 кВт. При прибавлении 20% — 11,52 кВт. В идеале, номинальная тепловая мощность приобретаемого котла должна как раз и расположиться в диапазоне от 10,56 до 11.52 кВт. Если такой модели нет, то приобретается ближайшая по показателю мощности в сторону его увеличения. Например, конкретно для этого примера отлично подойдут с мощностью 11.6 кВт – они представлены в нескольких линейках моделей различных производителей.

Возможно, вас заинтересует информация о том, что собой представляет для твердотопливного котла

Как правильнее оценить степень термоизоляции стен помещения?

Как и обещалось выше, в этом разделе статьи поможет читателю с оценкой уровня термоизоляции стен его жилых владений. Для этого тоже придется провести один упрощенный теплотехнический расчет.

Принцип проведения расчета

Согласно требованиям СНиП, сопротивление теплопередаче (которое еще иначе называют термическим сопротивлением) строительных конструкций жилых домов должно быть не ниже нормативного показателя. А эти нормированные показатели установлены для регионов страны, в соответствии с особенностями их климатических условий.

Где найти эти значения? Во-первых, они есть в специальных таблицах-приложениях к СНиП. Во-вторых, информацию о них можно получить в любой местной строительной или проектной архитектурной компании. Но вполне можно воспользоваться и предлагаемой картой-схемой, охватывающей всю территории Российской Федерации.

Нас в данном случае интересуют стены, поэтому и берем со схемы значение термического сопротивления именно «для стен» - они указаны фиолетовыми цифрами.

Теперь давайте взглянем, из чего складывается это термическое сопротивление, и чему оно равно с точки зрения физики.

Итак, сопротивление теплопередаче какого-то абстрактного однородного слоя х равно:

Rх = hх / λх

- сопротивление теплопередаче, измеряется в м²×°К/Вт;

- толщина слоя, выраженная в метрах;

λх - коэффициент теплопроводности материала, из которого изготовлен этот слой, Вт/м×°К. Это – табличная величина, и для любого из строительных или термоизоляционных материалов ее несложно отыскать на справочных ресурсах интернета.

Обычные строительные материалы, применяемые для возведения стен, чаще всего даже при их большой (в пределах разумного, конечно) толщине не дотягивают до нормативных показателей сопротивления теплопередаче. Иными словами, стену нельзя назвать полноценно термоизолированной. Вот для этого как раз и применяется утеплитель – создается дополнительный слой, который «восполняет дефицит», необходимый для достижения нормированных показателей. А за счет того, что коэффициенты теплопроводности у качественных утеплительных материалов низкие, можно избежать необходимости возводить очень большие по толщине конструкции.

Возможно, вас заинтересует информация о том, что такое

Взглянем на упрощённую схему утепленной стены:

1 - собственно, сама стена, имеющая определенную толщину и возведённая из того или иного материала. В большинстве случаев «по умолчанию» она сама не в состоянии обеспечить нормированное термическое сопротивление.

2 - слой утеплительного материала, коэффициент теплопроводности и толщина которого должны обеспечить «покрытие недостачи» до нормированного показателя R. Сразу оговоримся – расположение термоизоляции показано снаружи, но она может размещаться и с внутренней стороны стены, и даже располагаться между двумя слоями несущей конструкции (например, выложенной из кирпича по принципу «колодезной кладки»).

3 - внешняя фасадная отделка.

4 - внутренняя отделка.

Слои отделки часто не оказывают сколь-нибудь значимого влияния на общий показатель термического сопротивления. Хотя, при выполнении профессиональных расчетов их тоже берут во внимание. Кроме того, и отделка может быть разной – например, теплая штукатурка или пробковые плиты очень даже способны усилить общую термоизоляцию стен. Так что для «чистоты эксперимента» вполне можно учесть и оба этих слоя.

Но есть и важное замечание – никогда не принимается в расчет слой фасадной отделки, если между ним и стеной или утеплителем располагается вентилируемый зазор. А это часто практикуется в системах вентилируемого фасада. В такой конструкции внешняя отделка никакого влияния на общий уровень термоизоляции не окажет.

Итак, если нам известны материал и толщина самой капитальной стены, материал и толщина слоев утеплителя и отделки, то по указанной выше формуле несложно посчитать их суммарное термическое сопротивление и сопоставить его с нормированным показателем. Если оно не меньше – нет вопросов, стена имеет полноценную термоизоляцию. Если недостаточно – можно просчитать, какой слой и какого утеплительного материала эту недостачу способен восполнить.

Возможно, вас заинтересует информация о том, как выполняется

А чтобы сделать задачу еще проще – ниже размещен онлайн-калькулятор, который выполнит этот расчет быстро и точно.

Сразу несколько пояснений по работе с ним:

  • Для начала по карте схеме находят нормированное значение сопротивления теплопередаче. В данном случае, как уже говорилось, нас интересуют стены.

(Впрочем, калькулятор обладает универсальностью. И, позволяет оценивать термоизоляцию и перекрытий, и кровельных покрытий. Так что, при необходимости можно воспользоваться – добавьте страницу в закладки).

  • В следующей группе полей указывается толщина и материал основной несущей конструкции – стены. Толщина стены, если она обустроена по принципу «колодезной кладки» с утеплением внутри, указывается суммарная.
  • Если стена имеет термоизоляционный слой (независимо от места его расположения), то указывается тип утеплительного материала и толщина. Если утепления нет, то оставляется толщина по умолчанию равная «0» - переходят к следующей группе полей.
  • А следующая группа «посвящена» наружной отделке стены – также указывается материал и толщина слоя. Если отделки нет, или отсутствует необходимость ее принимать в расчет – все оставляется по умолчанию и переходят дальше.
  • Аналогичным образом поступают и со внутренней отделкой стены.
  • Наконец, останется только выбрать утеплительный материал, который планируется использовать для дополнительной термоизоляции. Возможные варианты указаны в выпадающем списке.

Нулевое или отрицательное значение сразу говорит о том, что термоизоляция стен соответствует нормативам, и дополнительного утепления попросту не требуется.

Близкое к нулю положительное значение, скажем, до 10÷15 мм, тоже не дает особых поводов беспокоиться, и степень термоизоляции можно считать высокой.

Недостаточность до 70÷80 мм уже должна заставить хозяев задуматься. Хотя такой утепление можно отнести к средней эффективности, и учесть его при расчетах тепловой мощности котла, лучше все же спланировать проведение работ по усилению термоизоляции. Какая нужна толщина дополнительного слоя – уже показано. А выполнение этих работ сразу даст ощутимый эффект – и повышением комфортности микроклимата в помещениях, и меньшим потреблением энергоресурсов.

Ну а если расчет показывает недостачу выше 80÷100 мм, утепления практически нет или оно чрезвычайно неэффективное. Тут двух мнений и быть не может – перспектива проведения утеплительных работ выходит на первый план. И это будет намного выгоднее, чем приобретать котел повышенной мощности, часть из которой будет попросту расходоваться буквально на «прогрев улицы». Естественно, в сопровождении разорительных счетов за зря потраченные энергоносители.

Время на чтение: 3 мин

Для обогрева жилых и офисных помещений используется оборудование с электрическим нагревателем воды. Для обеспечения баланса температуры и энергопотребления производится расчет электрокотла. При определении рабочих параметров учитывается не только площадь комнат, но и физические свойства материалов стен, пола и потолка помещения.

Что такое мощность электрокотла

Электрический котел представляет собой резервуар с теплообменником, через который прокачивается водопроводная вода или специальный теплоноситель, обладающий повышенными тепловыми характеристиками.

Котел подключается к бытовой сети переменного тока, нагревает он воду ТЭНами или электродами, изолированными от воды. В конструкции оборудования предусмотрен регулятор температуры.

Потребляемая мощность зависит от степени охлаждения теплоносителя при циркуляции по радиаторам отопления в здании. Часть энергии расходуется на тепловые потери в конструкции котла (нагрев стенок или защитных кожухов нагревательных элементов). На внешней части оборудования устанавливается информационная табличка, на которой указаны рабочие параметры изделия и потребляемая мощность.

Способы определения мощности электрокотла

Расчет рабочей мощности котла отопления выполняется для обеспечения сбалансированной системы отопления, способной поддерживать комфортную температуру в помещении при различных внешних условиях.

Оборудование должно обеспечивать равномерный прогрев комнат, изменение направления ветра не должно оказывать негативного воздействия на условия в помещениях. Перед выбором оборудования владельцу дома необходимо знать, как рассчитать мощность электрокотла с учетом особенностей помещения.

Для расчета применяются 2 основные методики:

  • по площади дома или комнат, подключенных к контуру отопления и котлу;
  • по объему помещений.

Вспомогательная методика определения мощности по контуру горячего водоснабжения предназначена для расчета дополнительной производительности. Полученный параметр суммируется с предварительно рассчитанным значением энергопотребления для отопления дома.

Затем проверяется способность электрической проводки, подведенной к зданию, выдержать максимальную нагрузку при работе нагревательных элементов котла.

Расчет котла по площади дома

Базовой методикой является определение мощности электрического котла отопления по площади помещений. Для определения значения используется базовое значение мощности, необходимой для обогрева комнаты площадью 10 м².

Коэффициент не зависит от климатической зоны, грубо считается, что для прогрева 10 м² необходимо затратить мощность 1 кВт. Коэффициент не учитывает теплопроводность материалов стен и высоту помещения, поэтому для уточнения расчета применяются дополнительные поправочные коэффициенты, определенные опытным путем.

Например, при высоте потолка более 2,7 м вводится дополнительный поправочный параметр, равный отношению фактической высоты к значению 2,7 м. Климатический коэффициент зависит от места расположения дома, значение находится в интервале от 0,7 для южных регионов до 2,0 - северных районов. Если нагревательный узел будет использоваться и для горячего водоснабжения, то к полученному показателю добавляется запас мощности 25-30%.

Существует другой способ подсчета, основанный на формуле S*K*100 , где параметр S является площадью помещений, а K представляет собой коэффициент тепловых потерь, изменяющийся в зависимости от минимального порога температуры воздуха. За базовое значение взята цифра 0,7, используемая в местности с минимальной температурой -10°С. При понижении климатической нормы на каждые 5°С коэффициент увеличивается на 0,2.

Метод не применяется при расчете котла для помещений со следующими особенностями конструкции:

  1. Наличие пластиковых или деревянных окон с дублированным стеклопакетом.
  2. Использование дополнительного теплоизоляционного слоя толщиной от 150 мм, расположенного внутри или снаружи кирпичной стены (толщиной 2 размера кирпича).
  3. Сохранение неотапливаемого чердачного помещения и отсутствие теплоизоляционного материала на отделке крыши.
  4. Увеличение высоты жилых комнат до 2,7 м и более.

Расчет мощности котла по объему

Расчет мощности электрического котла отопления по объему жилых помещений базируется на коэффициенте тепловых потерь, который составляет:

  1. От 0,6 до 0,9 - для строений из кирпича с улучшенной теплоизоляцией. В доме применяются пластиковые 2-камерные окна, может использоваться крыша из теплоизолирующего материала.
  2. От 1 до 1,9 - для зданий, построенных из кирпича (двойная кладка), со стандартной кровлей и деревянными окнами.
  3. От 2 до 2,9 - для помещений с ухудшенной теплоизоляцией (например, со стенами толщиной в 1 кирпич).
  4. От 3 до 4 - для зданий, построенных из древесины или выполненных из гофрированного металлического листа со слоем теплоизолирующего материала.

При расчете используется формула вида V*K*T/860 , где учитывается объем дома V, поправочный коэффициент K и разница температуру внутри дома и снаружи помещения. Для расчета берется минимальная температура воздуха, характерная для местоположения дома.

Полученное значение является избыточным, но в случае длительных морозов удастся поддерживать температуру в доме в заданных параметрах. Приведенная методика расчета мощности электрокотла для отопления дома не учитывает подачи дополнительной теплой жидкости для мытья посуды или душевой кабины.

Для жилых помещений в панельных или кирпичных домах расчет ведется по нормативам СНиП. Правила закладывают необходимую мощность для нагрева 1 м³ воздуха в пределах 41 и 34 Вт (для дома из панелей и силикатного кирпича, соответственно).

Затем владелец помещения проводит замеры высоты и площади, к полученному значению добавляется страховой запас 10% (на случай понижения температуры воздуха в зимнее время). При установке энергосберегающих окон допускается устанавливать котел с мощностью менее расчетной.

Для угловых помещений учитывается количество стен, контактирующих с улицей. Если на внешнюю сторону дома выходит только 1 стена, то требуется применять коэффициент 1,1. Каждая дополнительная стена увеличивает значение корректирующего параметра на 0,1. Для снижения тепловых потерь рекомендуется проанализировать помещение специальным прибором, а затем смонтировать слой изолятора.

Расчет для ГВС

Расчет электрокотла для отопления частного дома, одновременно используемого для горячего водоснабжения, учитывает следующие факторы:

  1. Количество и температура теплой воды, необходимой для обеспечения жизнедеятельности проживающих в помещении людей.
  2. На основании первого параметра определяется объем горячей воды +90°C, которая затем разбавляется потоком холодной жидкости для получения теплой.
  3. На основании полученного значения осуществляется расчет электрического котла. При определении параметров не учитывается понижение температуры водопроводной воды в зимнее время.

Например, жилой дом ежесуточно потребляет 200 л теплой воды (Vг) прогретой до +40°С (Tг). Предполагается получение необходимой температуры путем смешивания горячей и холодной воды. Владелец планирует приобрести котел, прогревающий жидкость до +95°С (Tк), в линии холодного водоснабжения подается вода с температурой +10°С (Tх).

Объем горячей воды определяется по формуле Vг*(Tг-Tх)/(Tк-Tх)=200*(40-10)/(95-10) . Расчет показывает, что для обеспечения подачи горячей воды в сутки требуется прогреть 71 л жидкости до температуры +95°С.

Дальнейший расчет ведется на основании коэффициента удельной теплоемкости воды (4,218 кДж на каждый кг при прогреве на 1°C), веса жидкости и разницы температур. Полученное значение затем переводится по таблицам в киловатты, рекомендуется округлять параметр в сторону увеличения.

Для описанной выше ситуации требуется дополнительная мощность около 5 кВт. Полученное значение подразумевает прогрев воды за 1 час, если жидкость используется равномерно в течение дня, то допускается снизить дополнительные энергозатраты в 2 раза.



Один из первых параметров, на который обращают внимание, при подборе отопительного оборудования, это производительность. Расчет мощности газового котла отопления, выполняют несколькими способами. От точных подсчетов, зависит комфорт во время эксплуатации.

Как подобрать мощность котла на газе

Расчет мощности газового котла отопления от площади, осуществляется тремя разными способами:



Европейские производители, нередко рассчитывают производительность котельного оборудования от объема помещения. Поэтому, в технической документации, указывается возможность обогрева в м³. Этот фактор учитывают при выборе агрегата, изготовленного в странах ЕС.

Большинство консультантов, продающих отопительное оборудование, самостоятельно подсчитывают необходимую производительность при помощи формулы 1 кВт=10 м². Дополнительные подсчеты, осуществляют по количеству теплоносителя в отопительной системе.

Расчет одноконтурного котла отопления

Как уже замечалось выше, самостоятельные подсчеты рабочих параметров отопительного оборудования, выполняют по формуле 1 кВт =10 м². К полученному результату, добавляют 15-20% запаса, благодаря чему, теплогенератор, даже в сильные морозы, не работает на полную нагрузку, что продлевает срок его эксплуатации.
  • Для 60 м² – удовлетворить потребность в тепле сможет агрегат на 6 кВт + 20% = 7,5 киловатт . Если нет модели с подходящим типоразмером производительности, предпочтение отдают отопительному оборудованию с большим значением мощности.
  • Подобным образом выполняют подсчеты для 100 м² – необходимая мощность котельного оборудования, 12 кВт.
  • Для отопления 150 м² нужен газовый котел, мощностью 15 кВт + 20% (3 киловатта) = 18 кВт . Соответственно, для 200 м², требуется котел на 22 кВт.
Данные вычисления подходят исключительно для одноконтурных моделей, не подключенных к бойлеру косвенного нагрева.

Как рассчитать мощность двухконтурного котла

Формула расчета требуемой мощности двухконтурного газового котла по площади отопления и точек водоразбора ГВС, следующая, 10 м² = 1 кВт +20% (запаса мощности) + 20% (на нагрев воды) . Получается, что к высчитанной производительности, добавляют сразу 40%.

Мощность двухконтурного газового котла для отопления и нагрева горячей воды для 250 м², составит 25 кВт + 40% (10 киловатт) = 35 кВт . Вычисления подходят для двухконтурного оборудования. Для подсчета производительности одноконтурного агрегата, подключенного к бойлеру косвенного нагрева, используют другую формулу.

Расчет мощности бойлера косвенного нагрева и одноконтурного котла

Чтобы рассчитать необходимую мощность одноконтурного газового котла с бойлером косвенного нагрева, необходимо выполнить следующие действия:
  • Определить какой объем бойлера будет достаточным, чтобы обеспечить потребности жильцов дома.
  • В технической документации к накопительной емкости, указана необходимая производительность котельного оборудования, чтобы поддерживать нагрев горячей воды, без учета необходимого тепла на отопление. Бойлер на 200 литров, в среднем потребует около 30 кВт.
  • Высчитывается производительность котельного оборудования, требуемая для отопления дома.

Полученные цифры складываются. От результата отнимается сумма, равная 20%. Это необходимо сделать по той причине, что, нагрев не будет одновременно работать на отопление и ГВС. Расчет тепловой мощности одноконтурного отопительного котла, с учетом внешнего нагревателя воды для горячего водоснабжения, делается с учетом этой особенности.

Какой запас мощности должен быть у газового котла

Запас производительности рассчитывается в зависимости от конфигурации отопительного оборудования:
  • Для одноконтурных моделей, запас составляет около 20%.
  • Для двухконтурных агрегатов, 20%+20%.
  • Котлы с подключением к бойлеру косвенного нагрева – в конфигурации накопительной емкости, указан необходимый дополнительный запас производительности.
Указанный запас мощности, действителен для помещений до 300 м². Дома с большей площадью требуют проведения грамотных теплотехнических расчетов.

Расчет потребности газа, исходя из мощности котла

Формула расчёта расхода газа, в зависимости от мощности используемого котла, принимает во внимание КПД отопительного оборудования. У стандартных моделей классического отопительных теплогенераторов, коэффициент полезного действия составит 92%, у конденсационных до 108%.

На практике, это означает, что 1 м³ газа, равен 10 кВт тепловой энергии, при условии 100% теплоотдачи. Соответственно, при КПД 92%, затраты топлива составят 1,12 м³, а при 108% не более 0,92 м³.

Методика расчета объема потребленного газа учитывает производительность агрегата. Так, 10 кВт прибор отопления, в течение часа, спалит 1,12 м³ топлива, 40 кВт агрегат, 4,48 м³. Данную зависимость потребления газа от мощности котельного оборудования, учитывают при сложных теплотехнических расчетах.

Соотношение также заложено в онлайн затраты на отопление. Производители нередко указывают средний расход газа для каждой выпускаемой модели.

Чтобы полностью подсчитать приблизительные материальные затраты на отопление, потребуется рассчитать потребление электроэнергии в энергозависимых котлах отопления. На данный момент, котельное оборудование, работающее на магистральном газе, являются наиболее экономичным способом обогрева.

Для отапливаемых зданий большой площади, вычисления осуществляют исключительно после проведения аудита на предмет теплопотерь здания. В остальных случаях, при вычислениях пользуются специальными формулами или онлайн сервисами.

Это мобильные котельные установки, предназначенные для обеспечения теплом и горячей водой объектов как жилых, так и производственных назначений. Все оборудование размещено в одном или нескольких блоках, которые потом стыкуются между собой, устойчиво к пожарам и перепадам температуры. Перед тем как остановиться на данном типе энергоснабжения, необходимо правильно провести расчёт мощности котельной.

Блочно-модульные котельные разделяются по виду используемого топлива и могут быть твердотопливными, газовыми , жидко-топливными и комбинированными.

Для комфортного проживания дома, в офисе или на производстве в холодное время года нужно озаботиться хорошей и надёжной системой отопления для здания или помещения. Для правильного расчёта тепловой мощности котельной нужно обратить внимание на несколько факторов и параметров здания.

Здания проектируются таким образом, чтобы минимизировать теплопотери. Но с учётом своевременного износа или технологических нарушений в процессе строительства здание может иметь уязвимые места, через которые тепло будет уходить. Для учёта этого параметра в общем расчёте мощности котельной модульного типа нужно либо избавиться от теплопотерь, либо включить их в расчёт.

Для устранения теплопотерь нужно провести специальное исследование, например, с помощью тепловизора. Он покажет все места, через которые утекает тепло, и нуждающиеся в утеплении или заделке. Если же решено было не устранять теплопотери, то при расчёте мощности котельной модульного типа нужно накинуть на получившуюся мощность процентов 10 для покрытия теплопотерь. Также при расчете необходимо учитывать степень утепленности здания и количество и размер окон и больших ворот. Если имеются большие ворота для заезда фур, например, добавляется около 30 % мощности для покрытия теплопотерь.

Расчёт по площади

Самым простым способом узнать необходимое потребление тепла считается расчёт мощности котельной по площади здания. С годами специалисты уже рассчитали стандартные константы для некоторых параметров теплообмена внутри помещения. Так, в среднем для отопления 10 квадратов площади нужно потратить 1 кВт тепловой энергии. Эти цифры будут актуальны для зданий построенных с соблюдением технологий по теплопотерям и высотой потолка не более 2,7 м. Теперь исходя из общей площади здания можно получить необходимую мощность котельной.

Расчёт по объёму

Более точным, нежели предыдущий метод вычисления мощности, считается расчёт мощности котельной по объёму здания. Здесь можно учесть сразу и высоту потолков. Согласно СНиПам, на отопление 1 кубометра в кирпичном здании приходится затратить в среднем 34 Вт. В нашей фирме мы пользуемся различными формулами для расчета необходимой тепловой мощности, учитывающие степень утепленности здания и его месторасположение, а также необходимую температуру внутри здания.

Что ещё необходимо учесть при расчёте?

Для полного расчёта мощности блочно модельной котельной необходимо будет учесть ещё несколько важных факторов. Один из них - это горячее водоснабжение. Для его расчёта необходимо учесть сколько воды будет ежедневно потребляться всеми членами семьи или производством. Таким образом зная количество потребляемой воды, необходимой температуры и учитывая время года, можно рассчитать правильную мощность котельной. В основном принято добавлять к полученной цифре около 20% на нагрев воды.

Очень важным параметром является размещение отапливаемого объекта. Для применения географических данных при расчёте, нужно обратиться к СНиПам, в которых можно обнаружить карту средних температур для летнего и зимнего периодов. В зависимости от размещения нужно применить соответствующий коэффициент. Например, для средней полосы России актуальна цифра 1. А вот северная часть страны имеет уже коэффициент 1,5-2. Так, получив некую цифру при проведении прошлых исследований нужно произвести умножение полученной мощности на коэффициент, в результате станет известна конечная мощность для текущего региона.

Теперь, перед тем, как рассчитать мощность котельной для конкретного дома нужно собрать как можно больше данных. Имеется дом в Сыктывкарской обл., построенный из кирпича, по технологии и соблюдены все меры по избежанию теплопотерь, площадью 100 кв. м. и высотой потолков 3 м. Таким образом полный объем здания составит 300 метров в кубе. Так как дом кирпичный, нужно умножить эту цифру на 34 Вт. Получается 10,2 кВт.

С учётом северного региона, частых ветров и короткого лета, полученную мощность нужно умножить на 2. Теперь получается уже 20,4 кВт нужно затратить для комфортного проживания или работы. При этом необходимо учесть, что какая-то часть мощности пойдёт на нагревание воды, а это как минимум 20%. Но для запаса лучше взять 25% и умножить на текущую необходимую мощность. В результате чего получится цифра 25,5. Но для надёжной и стабильной работы котельной установки нужно ещё взять запас в 10 процентов для того, чтобы ей не приходилось работать на износ в постоянном режиме. Итого получается 28 кВт.

Вот таким не хитрым образом получилась необходимая для отопления и нагрева воды мощность и теперь можно смело выбирать блочно-модульные котельные, мощность которых соответствует полученной цифре в расчётах.

Выбор редакции
Всем огромный привет! Спешу опять порадовать вас самым популярным августовским блюдом. Угадайте с трех раз! О чем я хочу написать? Каких...

Екатерина II – великая российская императрица, царствование которой стало самым значимым периодом в русской истории. Эпоха Екатерины...

Как выяснила «Газета.Ru», эксперты, расследующие катастрофу Robinson R-66 на Телецком озере в Республике Алтай, склоняются к версии, что...

Во время германской компании на Востоке, Messershmitt BF 109 был основным самолетом истребительной авиации Люфтваффе. Несмотря на их...
Гороскоп совместимости: цветы по знакам зодиака лев - самое полное описание, только доказанные теории, основанные на астрологических...
Символ рока и судьбы, предотвратить которую невозможно. Руна Наутиз означает вынужденные обстоятельства, ограничения, несвободу выбора....
Как приготовить лаваш в кляре Сегодня мы предлагаем вам приготовить блюдо, способное стать и замечательной закуской на праздничном столе,...
Чудеса Пресвятой Богородицы в наши дни не перестают удивлять и радовать христиан, а ее помощь приходит всем христианам, которые молятся...
Варенье из крыжовника в мультиварке готовить довольно легко, оно отличается от обычного лакомства, сваренного на плите, лишь своей...