Формула для нахождения положения центра масс системы. Центр масс системы материальных точек. Центры масс однородных фигур


Термин «центр масс» используется не только в механике и в расчетах движения но и обыденной жизни. Просто люди не всегда задумываются о том, какие же законы природы проявляются в той или иной ситуации. Например, фигуристы в парном катании активно используют центр масс системы, когда раскручиваются, взявшись за руки.

Понятие центра масс также применяется при проектировке кораблей. Необходимо учесть не просто два тела, а огромное их количество и все привести к единому знаменателю. Ошибки в расчетах означают отсутствие устойчивости корабля: в одном случае он будет чрезмерно погружен в воду, рискуя пойти ко дну при самых незначительных волнах; а в другом слишком приподнят над уровнем моря, создавая опасность переворота на бок. Кстати, именно поэтому каждая вещь на борту должна быть на своем месте, предусмотренным расчетами: наиболее массивные в самом низу.

Центр масс используется не только в отношении небесных тел и проектировании механизмов, но и при изучении «поведения» частиц микромира. К примеру, многие из них рождаются парами (электрон-позитрон). Обладая изначальным вращением и подчиняясь законам притяжения/отталкивания, они могут быть рассмотрены как система с общим центром масс.

В настоящем параграфе рассмотрим подробно частный случай системы собственно параллельных сил. Именно, всякое материальное тело или система материальных точек (дискретных частиц), находящихся на Земле, подвержены действию земного притяжения. Поэтому на каждую частицу таких механических систем действует сила ее тяжести. Строго говоря, все эти силы направлены в одну точку к центру Земли. Но так как размеры земных тел весьма малы по сравнению с радиусом Земли (полагаем, что также малы обьемы, в которых заключены дискретные частицы), то с большой степенью точности эти силы можно считать параллельными. Приведению этой системы сил и посвящен параграф.

Удельный вес

Выделим в теле элементарную частицу объемом столь малую, что ее положение можно определить одним радиусом-вектором Пусть вес этой частицы будет Величина

называется удельным весом, а величина

Плотностью тела.

В системе единиц СИ удельный вес имеет размерность

а плотность

В общем случае удельный вес и плотность являются функциями координат точек тела. Если они для всех точек одинаковые, то тело называется однородным.

Равнодействующая всех элементарных сил тяжести равна их сумме и представляет собой вес тела. Центр этих параллельных сил называется центром тяжести тела.

Очевидно, положение центра тяжести в теле не зависит от ориентации тела в пространстве. Это утверждение вытекает из сделанного ранее замечания о том, что центр параллельных сил не изменяет своего положения при повороте всех сил на один и тот же угол вокруг их точек приложения.

Формулы, определяющие центры тяжести тела и системы дискретных частиц

Для определения центра тяжести тела разобьем его на достаточно малые частицы объемом . К каждой из них приложим силу тяжести равную

Равнодействующая этих параллельных сил равна весу тела, который обозначим через

Радиус-вектор центра тяжести тела, который обозначим через , определится по формулам предыдущего параграфа как центр параллельных сил. Таким образом, будем иметь

Если определяется центр тяжести системы дискретных частиц, то будет удельный вес частицы, V, - ее объем - радиус-вектор, определяющий положение частицы. Последняя формула определяет в этом случае центр масс системы дискретных частиц.

Если механическая система представляет собой тело, образованное непрерывной совокупностью частиц, то в пределе суммы последних формул обращаются в интегралы и радиус-вектор центра тяжести тела может быть вычислен по формуле:

где интегралы распространяются по всему объему тела.

Если тело однородно то последняя формула имеет вид:

где V - объем всего тела.

Таким образом, когда тело однородно, определение его центра тяжести сводится к чисто геометрической задаче. В этом случае говорят о центре тяжести объема.

Центр масс тела

Введенное понятие центра тяжести имеет смысл лишь для тел (малых по сравнению с размерами Земли), находящихся вблизи поверхности Земли. Вместе с тем, метод вычисления координат центра тяжести позволяет применить его для вычисления координат точки, характеризующей распределение материи в теле. Для этого следует рассматривать не вес частиц, а их массу. Каждая частица тела объемом имеет массу

а заменяя в ранее полученной формуле на придем к равенству:

которое определяет точку, носящую название центра масс или центра инерции тела.

Если система состоит из материальных точек, массы которых то центр масс системы находится по формуле:

где представляет собой массу всей системы. Радиус-вектор центра масс тела зависит от выбора начала координат О. Если в качестве начала координат выбрать сам центр инерции, то будет равен нулю:

Понятие центра масс может быть введено независимо от понятия центра тяжести. Благодаря этому оно относится к любым механическим системам.

Статические моменты

Выражения называются соответственно статическими моментами веса, объема и массы тела относительно точки О. Если в качестве точки (начало координат) выбрать центр масс тела, то статические моменты тела относительно центра масс окажутся равными нулю, что будет неоднократно использоваться в дальнейшем.

Методы вычисления центра масс

В случае тела сложной формы определение координат центра масс по приведенным общим формулам обычно сопряжено с кропотливыми вычислениями. В ряде случаев их можно значительно упростить, если воспользоваться следующими методами.

1) Метод симметрии. Пусть тело имеет центр материальной симметрии. Это значит, что каждой частице с массой и радиусом-вектором проведенного из этого центра, соответствует частица с такой же массой и радиусом-вектором . В этом случае статический момент массы тела обратится в нуль и

Следовательно, центр масс будет совпадать в этом случае с центром материальной симметрии тела. Для однородных тел это означает, что центр масс совпадает с геометрическим центром объема тела. Если тело имеет плоскость материальной симметрии, то центр масс находится в этой плоскости. Если же тело симметрично относительно оси, то центр масс находится на этой оси.

Дифференциальные уравнения движения системы

Рассмотрим систему, состоящую из $n$ материальных точек. Выделим какую-нибудь точку системы с массой $m_{k}.$ Обозначим равнодействующую всех приложенных к точке внешних сил (и активных, и реакций связей) через $\overline{F}_{k}^{e} $, а равнодействующую всех внутренних сил -- через $\overline{F}_{k}^{l} $. Если точка имеет при этом ускорение $\overline{a_{k} }$, то по основному закону динамики:

Аналогичный результат получим для любой точки. Следовательно, для всей системы будет:

Уравнения (1) представляют собой дифференциальные уравнения движения системы в векторной форме.

Проектируя равенства (1) на координатные оси, получим уравнения движения системы в дифференциальной форме в проекциях на эти оси.

Однако при решении многих конкретных задач необходимость находить закон движения каждой из точек системы не возникает, а бывает достаточно найти характеристики, определяющие движение всей системы в целом.

Теорема о движении центра масс системы

Для определения характера движения системы требуется знать закон движения ее центра масс. Центром масс или центром инерции системы называется такая воображаемая точка, радиус-вектор $R$которой выражается через радиус векторы $r_{1} ,r_{2} ,...$материальных точек по формуле:

$R=\frac{m_{1} r_{1} +m_{2} r_{2} +...+m_{n} r_{n} }{m} $, (2)

где $m=m_{1} +m_{2} +...+m_{n} $ - общая масса всей системы.

Чтобы найти этот закон, обратимся к уравнениям движения системы (1) и сложим почленно их левые и правые части. Тогда получим:

$\sum m_{k} \overline{a}_{k} =\sum \overline{F}_{k}^{e} +\sum \overline{F}_{k}^{l} $. (3)

Из формулы (2) имеем:

Беря вторую производную по времени, получаем:

$\sum m_{k} \overline{a}_{k} =M\overline{a}_{c} $, (4)

где $\overline{a}_{c} $- ускорение центра масс системы.

Так как по свойству внутренних сил в системе $\sum \overline{F}_{k}^{l} =0$, получим окончательно из равенства (3), учтя (4):

$M\overline{a}_{c} =\sum \overline{F}_{k}^{e} $. (5)

Уравнение (5) выражает теорему о движении центра масс системы: произведение массы системы на ускорение ее центра масс равно геометрической сумме всех действующих на систему внешних сил или центр масс системы движется как материальная точка , масса которой равна массе всей системы и к которой приложены все внешние силы, действующие на систему.

Проецируя обе части равенства (5) на координатные оси, получим:

$M\ddot{x}_{c} =\sum \overline{F}_{kx}^{e} $, $M\ddot{y}_{c} =\sum \overline{F}_{ky}^{e} $, $M\ddot{z}_{c} =\sum \overline{F}_{kz}^{e} $. (6)

Эти уравнения представляют собой дифференциальные уравнения движения центра масс в проекциях на оси декартовой системы координат.

Значение теоремы состоит в следующем:

Теорема

  • Поступательно движущееся тело можно всегда рассматривать как материальную точку с массой, равной массе тела. В остальных случаях тело можно рассматривать как материальную точку лишь тогда, когда практически для определения положения тела достаточно знать положение его центра масс и допустимо по условиям задачи не принимать во внимание вращательную часть движения тела;
  • Теорема позволяет исключать из рассмотрения все наперед неизвестные внутренние силы. В этом ее практическая ценность.

Пример

Металлическое кольцо, подвешенное на нити к оси центробежной машины равномерно вращается с угловой скоростью $\omega $. Нить составляет угол $\alpha $с осью. Найти расстояние от центра кольца до оси вращения.

\[\omega \] \[\alpha \]

На нашу систему действует сила тяжести $\overline{N}$ $\overline{N}$ $\alpha \alpha$, сила натяжения нити и центростремительное ускорение.

Запишем второй закон Ньютона для нашей системы:

Спроецируем обе части на оси x и y:

\[\left\{ \begin{array}{c} N\sin \alpha =ma; \\ N\cos \alpha =mg; \end{array} \right.(4)\]

Разделив одно уравнение на другое, получим:

Так как $a=\frac{v^{2} }{R} ;$$v=\omega R$, находим искомое расстояние:

Ответ: $R=\frac{gtg\alpha }{\omega ^{2} } $

Снова рассмотрим ту же систему материальных точек. Построим радиус-вектор по следующему правилу:

где - радиус-вектор - той материальной точки системы, а - ее масса.

Радиус-вектор определяет положение в пространстве центра инерции (центра масс) системы.

Вовсе не обязательно, что в центре масс системы окажется какая-то материальная точка.

Пример. Найдем центр масс системы, состоящей из двух маленьких шариков - материальных точек, соединенных невесомым стержнем (рис. 3.29). Такая система тел называется гантелей.

Рис. 3.29. Центр масс гантели

Из рис. видно, что

Подставляя в эти равенства выражение для радиус-вектора центра масс

Отсюда следует, что центр масс лежит на прямой, проходящей через центры шаров. Расстояния l 1 и l 2 между шарами и центром масс равны соответственно

Центр масс ближе к тому шарику, масса которого больше, что видно из отношения:

Определим, с какой скоростью движется центр инерции системы. Дифференцируем по времени обе части:

В числителе полученного выражения в правой части стоит сумма импульсов всех точек, то есть импульс системы. В знаменателе стоит полная масса системы

Мы получили, что скорость центра инерции связана с импульсом системы и ее полной массой таким же соотношением, какое справедливо для материальной точки:

Видео 3.11. Движение центра масс двух одинаковых тележек, связанных пружиной.

Центр масс замкнутой системы движется всегда с постоянной скоростью, поскольку импульс такой системы сохраняется.

Если продифференцировать теперь выражение для импульса системы по времени и учесть, что производная импульса системы есть равнодействующая внешних сил, то получим уравнение движения центра масс системы в общем случае:

Видно, что

Центр масс системы движется точно так же, как двигалась бы материальная точка с массой, равной массе всех частиц системы, под действием векторной суммы всех внешних сил, приложенных к системе.

Если имеется система материальных точек, внутреннее расположение и движение которых нас не интересует, мы вправе считать ее материальной точкой с координатами радиус-вектора центра инерции и массой, равной сумме масс материальных точек системы.

Если связать с центром масс замкнутой системы материальных точек (частиц) систему отсчета (ее называют системой центра масс ), то полный импульс всех частиц в такой системе окажется равным нулю. Таким образом, в системе центра масс замкнутая система частиц как целое покоится, и существует только движение частиц относительно центра масс. Поэтому ясно выявляются свойства внутренних процессов, протекающих в замкнутой системе.

В случае, когда системой является тело с непрерывным распределением масс, определение центра масс остается по существу тем же. Окружаем произвольную точку в нашем теле небольшим объемом . Масса, заключенная в этом объеме, равна , где - плотность вещества тела, которая может и не быть постоянной по его объему. Сумма по всем таким элементарным массам заменяется теперь на интеграл по всему объему тела, так что для положения центра масс тела получается выражение

Если вещество тела однородно, плотность его постоянна, и ее можно вынести из-под знака интеграла, так что она сократится в числителе и знаменателе. Тогда выражение для радиус-вектора центра масс тела принимает вид

где - объем тела.

И в случае непрерывного распределения масс справедливо утверждение, что

Центр масс твердого тела движется так, как двигалась бы материальная точка с массой, равной массе тела, под действием векторной суммы всех внешних сил,приложенных к телу.

Пример . Если снаряд взрывается в некоторой точке своей параболической траектории, то осколки летят по самым различным траекториям, но его центр масс продолжает движение по параболе.

Механическая система

Механическая система - совокупность материальных точек: - движущихся согласно законам классической механики; и - взаимодействующих друг с другом и с телами, не включенными в эту совокупность.

Ма́сса

Масса проявляется в природе несколькими способами.

Пассивная гравитационная масса показывает, с какой силой тело взаимодействует с внешними гравитационными полями - фактически эта масса положена в основу измерения массы взвешиванием в современной метрологии.

Активная гравитационная масса показывает, какое гравитационное поле создаёт само это тело - гравитационные массы фигурируют в законе всемирного тяготения.

Инертная масса характеризует инертность тел и фигурирует в одной из формулировок второго закона Ньютона. Если произвольная сила винерциальной системе отсчёта одинаково ускоряет разные исходно неподвижные тела, этим телам приписывают одинаковую инертную массу.

Гравитационная и инертная массы равны друг другу (с высокой точностью - порядка 10 −13 - экспериментально, а в большинстве физических теорий, в том числе всех, подтверждённых экспериментально - точно), поэтому в том случае, когда речь идёт не о «новой физике», просто говорят о массе, не уточняя, какую из них имеют в виду.

В классической механике масса системы тел равна сумме масс составляющих её тел. В релятивистской механике масса не является аддитивной физической величиной, то есть масса системы в общем случае не равна сумме масс компонентов, а включает в себя энергию связи и зависит от характера движения частиц друг относительно друга

Центр масс - (в механике) геометрическая точка, характеризующаядвижение тела или системы частиц, как целого . Не является тождественным понятию центра тяжести (хотя чаще всего совпадает).

Положение центра масс (центра инерции) системы материальных точек в классической механике определяется следующим образом :

где - радиус-вектор центра масс, - радиус-вектор i -й точки системы, - масса i -й точки.

Для случая непрерывного распределения масс:

где - суммарная масса системы, - объём, - плотность. Центр масс, таким образом, характеризует распределение массы по телу или системе частиц.

Можно показать, что если система состоит не из материальных точек, а из протяжённых тел с массами , то радиус-вектор центра масс такой системы связан с радиус-векторами центров масс тел соотношением :

Иначе говоря, в случае протяжённых тел справедлива формула, по своей структуре совпадающая с той, что используется для материальных точек.

В механике !!!

Понятие центра масс широко используется в механике и физике.

Движение твёрдого тела можно рассматривать как суперпозицию движения центра масс и вращательного движения тела вокруг его центра масс. Центр масс при этом движется так же, как двигалось бы тело с такой же массой, но бесконечно малыми размерами (материальная точка). Последнее означает, в частности, что для описания этого движения применимы все законы Ньютона. Во многих случаях можно вообще не учитывать размеры и форму тела и рассматривать только движение его центра масс.

Часто бывает удобно рассматривать движение замкнутой системы в системе отсчёта, связанной с центром масс. Такая система отсчёта называется системой центра масс (Ц-система), или системой центра инерции. В ней полный импульс замкнутой системы всегда остаётся равным нулю, что позволяет упростить уравнения её движения.

Центры масс однородных фигур

У отрезка - середина.

У многоугольников (как сплошных плоских фигур, так и каркасов):

У параллелограмма - точка пересечения диагоналей.

У треугольника - точка пересечения медиан (центроид ).

У правильного многоугольника - центр поворотной симметрии.

У полукруга - точка, делящая перпендикулярный радиус в отношении 4:3π от центра круга.

Количество движения = импульс

Количество движения системы (импульс системы).

Количество движения (импульс тела) – векторная физическая величина, равная произведению массы тела на его скорость:

Импульс (количество движения) – одна из самых фундаментальных характеристик движения тела или системы тел.

Запишем II закон Ньютона в другой форме, учитывая, что ускорение Тогда следовательно

Произведение силы на время ее действия равно приращению импульса тела (рис. 1):

Где - импульс силы, который показывает, что результат действия силы зависит не только от ее значения, но и от продолжительности ее действия.

Рис.1

Количеством движения системы (импульсом) будем называть векторную величину , равную геомет­рической сумме (главному вектору) количеств движения (импульсов) всех точек системы (рис.2):

Из чертежа видно, что независимо от величин скоростей точек системы (если только эти скорости не параллельны) вектор может принимать любые значения и даже оказаться равным нулю, когда многоугольник, построенный из векторов , замкнется. Следова­тельно, по величине нель­зя полностью судить о ха­рактере движения системы.

Рис.2

Найдем формулу, с по­мощью которой значительно легче вычислять величину , а также уяснить ее смысл.

Из равенства

следует, что

Беря от обеих частей производную по времени, получим

Отсюда находим, что

количество движения (импульс) системы равно произведению массы всей системы на скорость ее центра масс . Этим результатом особенно удобно пользоваться при вычислении количеств движения твердых тел.

Из формулы видно, что если тело (или система) движется так, что центр масс остается неподвижным, то количество движения тела равно нулю. Например, количество движения тела, вращающегося вокруг неподвижной оси, проходящей через его центр масс, будет равно нулю.

Если же движение тела является сложным, то величина не будет характеризовать вращательную часть движения вокруг центра масс. Например, для катящегося колеса независимо от того, как вращается колесо вокруг его центра масс С .

Таким образом, количество движения характеризует только поступательное движение системы. При сложном же движении величина характеризует только поступательную часть движения системы вместе с центром масс.

Главный момент количе ств дв ижения (импульса) системы.

Главным моментом количеств движения (или кинетическом моментом) системы относительно данного центра О называется величина , равная геометрической сумме моментов количеств движения всех точек системы относи­тельно этого центра.

Аналогично определяются моменты количеств движения системы относительно координатных осей:

При этом представляют собою одновременно проекции вектора на координатные оси.

Подобно тому, как количество движения системы является характеристикой ее поступательного движения, главный момент количеств движения системы является характеристи­кой вращательного движения системы.

Рис.6

Чтобы уяснить механический смысл величины L 0 и иметь необхо­димые формулы для решения задач, вычислим кинетический момент тела, вращающегося вокруг неподвижнойоси (рис.6).Приэтом, как обычно, определение вектора сводится к определению его проекций .

Найдем сначала наиболее важ­ную для приложений формулу, оп­ределяющую величину L z , т.е. кине­тический момент вращающегося тела относительно оси вращения.

Для любой точки тела, отстоя­щей от оси вращения на расстоя­нии , скорость . Сле­довательно, для этой точки . Тогда для всего тела, вынося общий множитель ω за скобку, получим

Величина, стоящая в скобке, представляет собою момент инерции тела относительно оси z . Окончательно находим

Таким образом, кинетический момент вращающегося тела относительно оси вращения равен произведению момента инерции тела относительно этой оси на угловую скорость тела.

Если система состоит из нескольких тел, вращающихся вокруг одной и той же оси, то, очевидно, будет

Легко видеть аналогию между формулами и : количество движения равно произведению массы (величина, характеризующая инертность тела при поступательном движении) на скорость; кинети­ческий момент равен произведению момента инерции (величина, характеризующая инертность тела при вращательном движении) на угловую скорость.

Выбор редакции
Всем огромный привет! Спешу опять порадовать вас самым популярным августовским блюдом. Угадайте с трех раз! О чем я хочу написать? Каких...

Екатерина II – великая российская императрица, царствование которой стало самым значимым периодом в русской истории. Эпоха Екатерины...

Как выяснила «Газета.Ru», эксперты, расследующие катастрофу Robinson R-66 на Телецком озере в Республике Алтай, склоняются к версии, что...

Во время германской компании на Востоке, Messershmitt BF 109 был основным самолетом истребительной авиации Люфтваффе. Несмотря на их...
Гороскоп совместимости: цветы по знакам зодиака лев - самое полное описание, только доказанные теории, основанные на астрологических...
Символ рока и судьбы, предотвратить которую невозможно. Руна Наутиз означает вынужденные обстоятельства, ограничения, несвободу выбора....
Как приготовить лаваш в кляре Сегодня мы предлагаем вам приготовить блюдо, способное стать и замечательной закуской на праздничном столе,...
Чудеса Пресвятой Богородицы в наши дни не перестают удивлять и радовать христиан, а ее помощь приходит всем христианам, которые молятся...
Варенье из крыжовника в мультиварке готовить довольно легко, оно отличается от обычного лакомства, сваренного на плите, лишь своей...