Общий взгляд на преобразование дробей. Грамотное преобразование рациональных выражений Преобразование дробно рациональных выражений


Рациональные выражения и дроби — краеугольный пункт всего курса алгебры. Те, кто научатся работать с такими выражениями, упрощать их и раскладывать на множители, по сути смогут решить любую задачу, поскольку преобразование выражений — неотъемлемая часть любого серьёзного уравнения, неравенства и даже текстовой задачи.

В этом видеоуроке мы посмотрим, как грамотно применять формулы сокращённого умножения для упрощения рациональных выражений и дробей. Научимся видеть эти формулы там, где, на первый взгляд, ничего нет. Заодно повторим такой нехитрый приём, как разложение квадратного трёхчлена на множители через дискриминант.

Как вы уже наверняка догадались по формулам за моей спиной, сегодня мы будем изучать формулы сокращенного умножения, а, точнее, не сами формулы, а их применение для упрощения и сокращения сложных рациональных выражений. Но, прежде чем переходить к решению примеров, давайте познакомимся ближе с этими формулами или вспомним их:

  1. ${{a}^{2}}-{{b}^{2}}=\left(a-b \right)\left(a+b \right)$ — разность квадратов;
  2. ${{\left(a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ — квадрат суммы;
  3. ${{\left(a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$ — квадрат разности;
  4. ${{a}^{3}}+{{b}^{3}}=\left(a+b \right)\left({{a}^{2}}-ab+{{b}^{2}} \right)$ — сумма кубов;
  5. ${{a}^{3}}-{{b}^{3}}=\left(a-b \right)\left({{a}^{2}}+ab+{{b}^{2}} \right)$ — разность кубов.

Еще хотел бы отметить, что наша школьная система образования устроена таким образом, что именно с изучением этой темы, т.е. рациональных выражений, а также корней, модулей у всех учеников возникает одна и та же проблема, которую я сейчас объясню.

Дело в том, что в самом начале изучения формул сокращенного умножения и, соответственно, действий по сокращению дробей (это где-то 8 класс) учителя говорят что-то следующее: «Если вам что-то непонятно, то вы не переживайте, мы к этой теме еще вернемся неоднократно, в старших классах так точно. Мы это еще разберем». Ну а затем на рубеже 9-10 класса те же самые учителя объясняют тем же самым ученикам, которые так и не знают, как решать рациональные дроби, примерно следующее: «А где вы были предыдущие два года? Это же изучалось на алгебре в 8 классе! Чего тут может быть непонятного? Это же так очевидно!».

Однако обычным ученикам от таких объяснений нисколько не легче: у них как была каша в голове, так и осталась, поэтому прямо сейчас мы разберем два простых примера, на основании которых и посмотрим, каким образом в настоящих задачах выделять эти выражения, которые приведут нас к формулам сокращенного умножения и как потом применять это для преобразования сложных рациональных выражений.

Сокращение простых рациональных дробей

Задача № 1

\[\frac{4x+3{{y}^{2}}}{9{{y}^{4}}-16{{x}^{2}}}\]

Первое, чему нам нужно научиться — выделять в исходных выражениях точные квадраты и более высокие степени, на основании которых мы сможем потом применять формулы. Давайте посмотрим:

Перепишем наше выражение с учетом этих фактов:

\[\frac{4x+3{{y}^{2}}}{{{\left(3{{y}^{2}} \right)}^{2}}-{{\left(4x \right)}^{2}}}=\frac{4x+3{{y}^{2}}}{\left(3{{y}^{2}}-4x \right)\left(3{{y}^{2}}+4x \right)}=\frac{1}{3{{y}^{2}}-4x}\]

Ответ: $\frac{1}{3{{y}^{2}}-4x}$.

Задача № 2

Переходим ко второй задаче:

\[\frac{8}{{{x}^{2}}+5xy-6{{y}^{2}}}\]

Упрощать тут нечего, потому что в числителе стоит константа, но я предложил эту задачу именно для того, чтобы вы научились раскладывать на множители многочлены, содержащие две переменных. Если бы вместо него был написанный ниже многочлен, как бы мы разложили его?

\[{{x}^{2}}+5x-6=\left(x-... \right)\left(x-... \right)\]

Давайте решим уравнение и найдем $x$, которые мы сможем поставить вместо точек:

\[{{x}^{2}}+5x-6=0\]

\[{{x}_{1}}=\frac{-5+7}{2}=\frac{2}{2}=1\]

\[{{x}_{2}}=\frac{-5-7}{2}=\frac{-12}{2}=-6\]

Мы можем переписать трехчлен следующим образом:

\[{{x}^{2}}+5xy-6{{y}^{2}}=\left(x-1 \right)\left(x+6 \right)\]

С квадратным трехчленом мы работать научились — для этого и нужно было записать этот видеоурок. А что делать, если кроме $x$ и константы присутствует еще $y$? Давайте рассмотрим их как еще одни элементы коэффициентов, т.е. перепишем наше выражение следующим образом:

\[{{x}^{2}}+5y\cdot x-6{{y}^{2}}\]

\[{{x}_{1}}=\frac{-5y+7y}{2}=y\]

\[{{x}_{2}}=\frac{-5y-7y}{2}=\frac{-12y}{2}=-6y\]

Запишем разложение нашей квадратной конструкции:

\[\left(x-y \right)\left(x+6y \right)\]

Итого если мы вернемся к исходному выражению и перепишем его с учетом изменений, то получим следующее:

\[\frac{8}{\left(x-y \right)\left(x+6y \right)}\]

Что нам дает такая запись? Ничего, потому что его не сократить, оно ни на что не умножается и не делится. Однако как только эта дробь окажется составной частью более сложного выражения, подобное разложение окажется кстати. Поэтому как только вы видите квадратный трехчлен (неважно, отягощен он дополнительными параметрами или нет), всегда старайтесь разложить его на множители.

Нюансы решения

Запомните основные правила преобразования рациональных выражений:

  • Все знаменатели и числители необходимо раскладывать на множители либо через формулы сокращенного умножения, либо через дискриминант.
  • Работать нужно по такому алгоритму: когда мы смотрим и пытаемся выделить формулу сокращенного умножения, то, прежде всего, пытаемся все перевести в максимально возможную степень. После этого выносим за скобку общую степень.
  • Очень часто будут встречаться выражения с параметром: в качестве коэффициентов будут возникать другие переменные. Их мы находим по формуле квадратного разложения.

Таким образом, как только вы видите рациональные дроби, первое, что нужно сделать — это разложить и числитель, и знаменатель на множители (на линейные выражения), при этом мы используем формулы сокращенного умножения или дискриминант.

Давайте посмотрим на пару таких рациональных выражений и попробуем их разложить на множители.

Решение более сложных примеров

Задача № 1

\[\frac{4{{x}^{2}}-6xy+9{{y}^{2}}}{2x-3y}\cdot \frac{9{{y}^{2}}-4{{x}^{2}}}{8{{x}^{3}}+27{{y}^{3}}}\]

Переписываем и стараемся разложить каждое слагаемое:

Давайте перепишем все наше рациональное выражение с учетом этих фактов:

\[\frac{{{\left(2x \right)}^{2}}-2x\cdot 3y+{{\left(3y \right)}^{2}}}{2x-3y}\cdot \frac{{{\left(3y \right)}^{2}}-{{\left(2x \right)}^{2}}}{{{\left(2x \right)}^{3}}+{{\left(3y \right)}^{3}}}=\]

\[=\frac{{{\left(2x \right)}^{2}}-2x\cdot 3y+{{\left(3y \right)}^{2}}}{2x-3y}\cdot \frac{\left(3y-2x \right)\left(3y+2x \right)}{\left(2x+3y \right)\left({{\left(2x \right)}^{2}}-2x\cdot 3y+{{\left(3y \right)}^{2}} \right)}=-1\]

Ответ: $-1$.

Задача № 2

\[\frac{3-6x}{2{{x}^{2}}+4x+8}\cdot \frac{2x+1}{{{x}^{2}}+4-4x}\cdot \frac{8-{{x}^{3}}}{4{{x}^{2}}-1}\]

Давайте рассмотрим все дроби.

\[{{x}^{2}}+4-4x={{x}^{2}}-4x+2={{x}^{2}}-2\cdot 2x+{{2}^{2}}={{\left(x-2 \right)}^{2}}\]

Перепишем всю конструкцию с учетом изменений:

\[\frac{3\left(1-2x \right)}{2\left({{x}^{2}}+2x+{{2}^{2}} \right)}\cdot \frac{2x+1}{{{\left(x-2 \right)}^{2}}}\cdot \frac{\left(2-x \right)\left({{2}^{2}}+2x+{{x}^{2}} \right)}{\left(2x-1 \right)\left(2x+1 \right)}=\]

\[=\frac{3\cdot \left(-1 \right)}{2\cdot \left(x-2 \right)\cdot \left(-1 \right)}=\frac{3}{2\left(x-2 \right)}\]

Ответ: $\frac{3}{2\left(x-2 \right)}$.

Нюансы решения

Итак, чему мы только что научились:

  • Далеко не каждый квадратный трехчлен раскладывается на множители, в частности, это относится к неполному квадрату суммы или разности, которые очень часто встречаются как части кубов суммы или разности.
  • Константы, т.е. обычные числа, не имеющие при себе переменных, также могут выступать активными элементами в процессе разложения. Во-первых, их можно выносить за скобки, во-вторых, сами константы могут быть представимы в виде степеней.
  • Очень часто после разложения всех элементов на множители возникают противоположные конструкции. Сокращать эти дроби нужно крайне аккуратно, потому что при из зачеркивании либо сверху, либо снизу возникает дополнительный множитель $-1$ — это как раз и есть следствие того, что они противоположны.

Решение сложных задач

\[\frac{27{{a}^{3}}-64{{b}^{3}}}{{{b}^{2}}-4}:\frac{9{{a}^{2}}+12ab+16{{b}^{2}}}{{{b}^{2}}+4b+4}\]

Рассмотрим каждое слагаемое отдельно.

Первая дробь:

\[{{\left(3a \right)}^{3}}-{{\left(4b \right)}^{3}}=\left(3a-4b \right)\left({{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}} \right)\]

\[{{b}^{2}}-{{2}^{2}}=\left(b-2 \right)\left(b+2 \right)\]

Весь числитель второй дроби мы можем переписать следующим образом:

\[{{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}}\]

Теперь посмотрим на знаменатель:

\[{{b}^{2}}+4b+4={{b}^{2}}+2\cdot 2b+{{2}^{2}}={{\left(b+2 \right)}^{2}}\]

Давайте перепишем все рациональное выражение с учетом вышеизложенных фактов:

\[\frac{\left(3a-4b \right)\left({{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}} \right)}{\left(b-2 \right)\left(b+2 \right)}\cdot \frac{{{\left(b+2 \right)}^{2}}}{{{\left(3a \right)}^{2}}+3a\cdot 4b+{{\left(4b \right)}^{2}}}=\]

\[=\frac{\left(3a-4b \right)\left(b+2 \right)}{\left(b-2 \right)}\]

Ответ: $\frac{\left(3a-4b \right)\left(b+2 \right)}{\left(b-2 \right)}$.

Нюансы решения

Как мы еще раз убедились, неполные квадраты суммы либо неполные квадраты разности, которые часто встречаются в реальных рациональных выражениях, однако не стоит их пугаться, потому что после преобразования каждого элемента они практически всегда сокращаются. Кроме того, ни в коем случае не стоит бояться больших конструкций в итогом ответе — вполне возможно, что это не ваша ошибка (особенно, если все разложено на множители), а это автор задумал такой ответ.

В заключение хотелось бы разобрать еще один сложных пример, который уже не относится напрямую к рациональным дробям, однако он содержит все то, что ждет вас на настоящих контрольных и экзаменах, а именно: разложение на множители, приведение к общему знаменателю, сокращение подобных слагаемых. Вот именно этим мы сейчас и займемся.

Решение сложной задачи на упрощение и преобразование рациональных выражений

\[\left(\frac{x}{{{x}^{2}}+2x+4}+\frac{{{x}^{2}}+8}{{{x}^{3}}-8}-\frac{1}{x-2} \right)\cdot \left(\frac{{{x}^{2}}}{{{x}^{2}}-4}-\frac{2}{2-x} \right)\]

Сначала рассмотрим и раскроем первую скобку: в ней мы видим три отдельных дроби с разными знаменателями поэтому первое, что нам необходимо сделать — это привести все три дроби к общему знаменателю, а для этого каждый из них следует разложить на множители:

\[{{x}^{2}}+2x+4={{x}^{2}}+2\cdot x+{{2}^{2}}\]

\[{{x}^{2}}-8={{x}^{3}}-{{2}^{2}}=\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)\]

Перепишем всю нашу конструкцию следующим образом:

\[\frac{x}{{{x}^{2}}+2x+{{2}^{2}}}+\frac{{{x}^{2}}+8}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}-\frac{1}{x-2}=\]

\[=\frac{x\left(x-2 \right)+{{x}^{3}}+8-\left({{x}^{2}}+2x+{{2}^{2}} \right)}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\]

\[=\frac{{{x}^{2}}-2x+{{x}^{2}}+8-{{x}^{2}}-2x-4}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\frac{{{x}^{2}}-4x-4}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\]

\[=\frac{{{\left(x-2 \right)}^{2}}}{\left(x-2 \right)\left({{x}^{2}}+2x+{{2}^{2}} \right)}=\frac{x-2}{{{x}^{2}}+2x+4}\]

Это результат вычислений из первой скобки.

Разбираемся со второй скобкой:

\[{{x}^{2}}-4={{x}^{2}}-{{2}^{2}}=\left(x-2 \right)\left(x+2 \right)\]

Перепишем вторую скобку с учетом изменений:

\[\frac{{{x}^{2}}}{\left(x-2 \right)\left(x+2 \right)}+\frac{2}{x-2}=\frac{{{x}^{2}}+2\left(x+2 \right)}{\left(x-2 \right)\left(x+2 \right)}=\frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}\]

Теперь запишем всю исходную конструкцию:

\[\frac{x-2}{{{x}^{2}}+2x+4}\cdot \frac{{{x}^{2}}+2x+4}{\left(x-2 \right)\left(x+2 \right)}=\frac{1}{x+2}\]

Ответ: $\frac{1}{x+2}$.

Нюансы решения

Как видите, ответ получился вполне вменяемый. Однако обратите внимание: очень часто при таких масштабных вычислениях, когда единственная переменная оказывается лишь в знаменателе, ученики забывают, что это знаменатель и он должен стоял внизу дроби и пишут это выражение в числитель — это грубейшая ошибка.

Кроме того, хотел бы обратить ваше отдельное внимание на то, как оформляются такие задачи. В любых сложных вычислениях все шаги выполняются по действиям: сначала отдельно считаем первую скобку, потом отдельно вторую и лишь в конце мы объединяем все части и считаем результат. Таким образом мы страхуем себя от глупых ошибок, аккуратно записываем все выкладки и при этом нисколько не тратим лишнего времени, как это может показаться на первый взгляд.

Учение без принуждения

(Путеводитель в увлекательный мир математики)

Математику уже затем учить надо, что она ум в порядок приводит. (М.В. Ломоносов)

Так как же учить математику?

Этот вопрос интересует многих.

Первым делом нужно ликвидировать пробелы из прошлого. Если вы пропустили (не поняли, принципиально не изучали, и т.д.) какую-нибудь тему, рано или поздно вы обязательно наступите на эти грабли. С классическим результатом... Уж так устроена математика.

Независимо от того, изучаете вы новую тему, или повторяете старую - освойте математические определения и термины! Обратите внимание, я не говорю – «выучите», а говорю «освойте». Это разные вещи. Вы должны понимать, к примеру, что такое знаменатель, дискриминант, или арксинус на простом, даже примитивном уровне. Что это такое, зачем это нужно и как с этим обращаться. Жить станет легче.

Если я вас спрошу, как пользоваться устройством перехода через плотные ограниченные среды, вам будет неуютно отвечать, верно? А если вы понимаете, что это самое устройство - обычная дверь? Правда, как-то веселее.

И, конечно, нужно решать. Если не умеете решать - ничего страшного. Нужно пытаться решать, пробовать. Все когда-то не умели. Но кто пытался и пробовал, пусть и неправильно, с ошибками - тот сейчас умеет решать. А кто не пробовал, не учился - тот так и не научился.

Вот вам три составляющие ответа на вопрос: "Как учить математику?" Ликвидировать пробелы, освоить термины на понятном уровне и осмысленно решать задания.

Если вам математика представляется дебрями каких-то правил, формул, выражений, в которых невозможно ориентироваться, то я вас утешу. Есть там тропы и путеводные звезды! Обживетесь, попривыкнете, еще и любоваться этими дебрями начнете…

Математика школьного курса не решает сложные примеры, так как не умеет. Она хорошо может решить что-нибудь вида 5х = 10, квадратное уравнение через дискриминант, ну и такое же простое из тригонометрии, логарифмов и т.д. И вся мощь математики направлена на упрощение сложных выражений. Именно для этого нужны правила и формулы различных преобразований. Они позволяют записывать исходное выражение в другом, удобном нам виде, не меняя его сущности.



«Математика – это искусство называть разные вещи одним и тем же именем». (А. Пуанкаре)

Например, 8 = 6 + 2 = 2 = = log 6561 = 32: 4. Это всё одно и то же число 8! Только записано в самых разных видах. Какой вид выбрать - решать нам! Сообразуясь с заданием и здравым смыслом.

Главной путеводной звездой в математике является умение преобразовывать выражения. Практически любое решение начинается с преобразования исходного выражения. С помощью правил и формул, которых вовсе не такое безумное количество, как вам кажется.

Мы часто говорим «Все формулы работают слева – направо и справа – налево». Скажем, (a + b) почти каждый распишет как a + 2ab + b . Но не каждый (к сожалению) сообразит, что x + 2x + 1 можно записать, как (x + 1) . А вот это надо уметь! Формулы нужно знать в лицо! Уметь опознавать их в зашифрованных хитрыми преподавателями выражениях, выявлять части формул, доводить, при необходимости, до полных.

Преобразования выражений – вещь, поначалу, хлопотная. Требует труда. На стартовом этапе нужно проверять, где можно, правильность преобразования обратным преобразованием. Разложили на множители – перемножьте обратно и приведите подобные. Получилось исходное выражение – ура! Нашли корни уравнения – подставьте в исходное выражение. Посмотрите, что получилось. И так далее.

Итак, я приглашаю вас в удивительный мир математики. А начнём наш путь со знакомства с дробями, так это, пожалуй, самое уязвимое место большинства школьников.

В добрый путь!

Занятие 1.

Виды дробей. Преобразования.

Кто знает дроби, тот силён, тот в математике отважен!

Дроби бывают трёх видов.

1. Обыкновенные дроби , например: , , , .

Иногда вместо горизонтальной черты ставят наклонную черту: 1/2, 3/7, 19/5. Черта, и горизонтальная (винкулиум), и наклонная (солидус) означает одну и ту же операцию: деление верхнего числа (числителя) на нижнее (знаменатель). И всё! Вместо черты вполне можно поставить знак деления - две точки. 1/2 = 1: 2.

Когда деление возможно нацело, это надо делать. Так, вместо дроби 32/8 гораздо приятнее написать число 4. Т.е. 32 просто поделить на 8. 32/8 = 32: 8 = 4. Я уж не говорю про дробь 4/1, которая тоже равна 4. А если уж не делится нацело, так и оставляем, в виде дроби. Иногда приходится обратную операцию проделывать. Делать из целого числа дробь. Но об этом далее.

2. Десятичные дроби , например: 0,5; 3,28; 0,543; 23,32.

3. Смешанные числа , например: , , , .

Смешанные числа практически не используются в старших классах. Для того, чтобы с ними работать, их надо переводить в обыкновенные дроби. Но это точно надо уметь делать! А то попадётся такое число в задаче и зависните... На пустом месте. Но мы-то вспомним эту процедуру!

Наиболее универсальны обыкновенные дроби. С них и начнём. Кстати, если в дроби стоят всякие логарифмы, синусы и прочие буквы, это ничего не меняет. В том смысле, что все действия с дробными выражениями ничем не отличаются от действий с обыкновенными дробями!

Итак, вперёд! Всё многообразие преобразований дробей обеспечивается одним-единственным свойством! Оно так и называется, основное свойство дроби . Запоминайте: если числитель и знаменатель дроби умножить (разделить) на одно и то же число, дробь не изменится. Т.е:

А оно нам надо, все эти превращения? – спросите вы. Ещё как! Сейчас сами увидите. Для начала употребим основное свойство дроби для сокращения дробей. Казалось бы, вещь элементарная. Делим числитель и знаменатель на одно и то же число и все дела! Ошибиться невозможно! Но... человек - существо творческое. Ошибиться везде может! Особенно, если приходиться сокращать не дробь вида 5/10, а дробное рациональное выражение.

Обычно ученик не задумывается над делением числителя и знаменателя на одно и то же число (или выражение)! Он просто зачеркивает всё одинаковое сверху и снизу! Здесь-то и таится типичная ошибка, ляп, если хотите.

Например, надо упростить выражение: .

Что мы делаем? Зачеркиваем множитель а сверху и степень снизу! Получаем: .

Все правильно. Но реально вы поделили весь числитель и весь знаменатель на множитель а. Если вы привыкли просто зачеркивать, то, впопыхах, можете зачеркнуть букву а в выражении и получить снова . Что будет категорически неверно: непростительная ошибка. Потому что здесь весь числитель на а уже не делится ! Эту дробь сократить нельзя.

При сокращении делить надо весь числитель и весь знаменатель!

Сокращение дробей сильно облегчает жизнь. Получится где-нибудь у вас дробь, к примеру, 375/1000. И как теперь с ней дальше работать? Без калькулятора? Умножать, скажем, складывать, в квадрат возводить!? А если не полениться, да аккуратненько сократить на пять, да ещё на пять, да ещё... пока сокращается. Получим 3/8! Куда приятнее, правда?

Основное свойство дроби позволяет переводить обыкновенные дроби в десятичные и, наоборот, без калькулятора! Это важно на ЦТ, правда?

С десятичными дробями всё просто. Как слышится, так и пишется! Скажем, 0,25. Это нуль целых, двадцать пять сотых. Так и пишем: 25/100. Сокращаем (делим числитель и знаменатель на 25), получаем обыкновенную дробь: 1/4. Всё. Бывает, и не сокращается ничего. Например, 0,3. Это три десятых, т.е. 3/10.

А если целых - не нуль? Ничего страшного. Записываем всю дробь без всяких запятых в числитель, а в знаменатель - то, что слышится. Например: 3,17. Это три целых, семнадцать сотых. Пишем в числитель 317, а в знаменатель 100. Получаем 317/100. Ничего не сокращается, значит всё. Это ответ. Из всего сказанного полезный вывод: любую десятичную дробь можно превратить в обыкновенную.

А вот обратное преобразование, обыкновенной в десятичную, некоторые без калькулятора не могут сделать. А надо! Как вы ответ записывать будете!? Внимательно читаем и осваиваем этот процесс.

Десятичная дробь чем характерна? У неё в знаменателе всегда стоит 10, или 100, или 1000, или 10000 и так далее. Если ваша обыкновенная дробь имеет такой знаменатель, проблем нет. Например, 4/10 = 0,4. Или 7/100 = 0,07. Или 12/10 = 1,2. А если в результате решения получилось 1/2? А ответ нужно записать десятичной…

Вспоминаем основное свойство дроби ! Математика благосклонно позволяет умножать числитель и знаменатель на одно и то же число. На любое, между прочим! Кроме нуля, разумеется. Вот и применим это свойство себе на пользу! На что можно умножить знаменатель, т.е. 2 чтобы он стал 10, или 100, или 1000 (поменьше лучше, конечно...)? На 5, очевидно. Смело умножаем знаменатель на 5. Но, тогда и числитель надо умножить тоже на 5. Получим 1/2 = 0,5. Вот и всё.

Однако, знаменатели могут быть разными. Например, дробь 3/16. Тогда можно просто разделить 3 на 16. За отсутствием калькулятора делить придётся уголком, как в младших классах учили. Получим 0,1875.

А бывают и совсем скверные знаменатели. Например, дробь 1/3 ну никак не превратишь в хорошую десятичную. И на калькуляторе, и при делении уголком мы получим 0,3333333... Отсюда ещё один полезный вывод. Не каждая обыкновенная дробь переводится в десятичную!

Итак, с обыкновенными и десятичными дробями разобрались. Осталось разобраться со смешанными числами. Для работы с ними их нужно перевести в обыкновенные дроби. Как это сделать? Можно поймать пятиклассника и спросить у него. Но не всегда пятиклассник окажется рядом... Придётся самим. Это несложно. Надо знаменатель дробной части умножить на целую часть и прибавить числитель дробной части. Это будет числитель обычной дроби. А знаменатель? Знаменатель останется тем же самым. Звучит сложно, но на деле всё элементарно. Смотрим пример.

Пусть в задаче вы с ужасом увидели число:

Спокойно, без паники рассуждаем. Целая часть - это 1. Единица. Дробная часть - 3/7. Стало быть, знаменатель дробной части - 7. Этот знаменатель и будет знаменателем обыкновенной дроби. Считаем: числитель. 7 умножаем на 1 (целая часть) и прибавляем 3 (числитель дробной части). Получим 10. Это будет числитель обыкновенной дроби. Вот и всё. Еще проще это выглядит в математической записи:

Легко? Тогда закрепите успех! Переведите эти смешанные числа , , в обыкновенные дроби. У вас должно получиться 10/3, 23/10 и 21/4.

Ну вот, практически и всё. Вы вспомнили виды дробей и поняли, как переводить их из одного вида в другой. Остаётся вопрос: зачем это делать? Где и когда применять эти глубокие познания?

Любой пример сам подсказывает необходимые действия. Если в примере смешались в кучу обыкновенные дроби, десятичные, да ещё и смешанные числа, переводим всё в обыкновенные дроби. Это всегда можно сделать. Ну а если написано, к примеру, 0,8 + 0,3, то так и считаем, безо всякого перевода. Зачем нам лишняя работа? Мы выбираем тот путь решения, который удобен нам!

Если в задании сплошь десятичные дроби, но гм... страшные какие-то, перейдите к обыкновенным, попробуйте! Может, всё и наладится. Например, придется в квадрат возводить число 0,125. Не так-то просто, если от калькулятора не отвыкли! Мало того, что числа перемножать столбиком надо, так ещё думай, куда запятую вставить! В уме точно не получится! А если перейти к обыкновенной дроби? 0,125 = 125/1000. Сокращаем на 5 (это для начала). Получаем 25/200. Ещё раз на 5. Получаем 5/40. Ещё сокращается! Снова на 5! Получаем 1/8. Легко возводим в квадрат (в уме!) и получаем 1/64. Всё!

Подведём итоги нашего занятия.

1. Дроби бывают трёх видов: обыкновенные, десятичные и смешанные числа.

2. Десятичные дроби и смешанные числа всегда можно перевести в обыкновенные дроби. Обратный перевод не всегда возможен.

3. Выбор вида дробей для работы с заданием зависит от этого самого задания. При наличии разных видов дробей в одном задании, самое надёжное - перейти к обыкновенным дробям.

Практические советы:

1. Самое главное при работе с дробными выражениями - аккуратность и внимательность! Это не общие слова, не благие пожелания! Это суровая необходимость! Лучше написать две лишние строчки в черновике, чем ошибиться при расчёте в уме.

2. В примерах с разными видами дробей - переходим к обыкновенным дробям.

3. Все дроби сокращаем до упора.

4. Многоэтажные дробные выражения сводим к обыкновенным, используя деление через две точки (следим за порядком деления!).

5. Единицу на дробь делим в уме, просто переворачивая дробь.

А теперь попробуйте применить теорию на практике.

Итак, решаем в режиме экзамена! Решаем пример, проверяем, решаем следующий. Решили все - проверили снова с первого по последний пример. И только потом смотрим ответы.

Решили? Ищем ответы, которые совпадают с вашими. Ответы записаны в беспорядке, подальше от соблазна, так сказать...

0; 17/22; 3; 1; 3/4; 14; -5/4; 17/12; 1/3; 5; 2/5; 25.

А теперь делаем выводы. Если всё получилось - рада за вас! Элементарные вычисления с дробями - не ваша проблема! Можно заняться более серьёзными вещами. Если нет... Терпение и труд всё перетрут.

Данный обобщенный материал известен из школьного курса математики. Тут рассматриваем дроби общего вида с числами, степенями, корнями, логарифмами, тригонометрическими функция ми или другими объектами. Будут рассмотрены основные преобразования дробей вне зависимости от их вида.

Что такое дробь?

Определение 1

Существует еще несколько определений.

Определение 2

Горизонтальная наклонная черта, которая разделяет A и B , называют чертой дроби или дробной чертой.

Определение 3

Выражение, которое находится над чертой дроби, называют числителем, а под – знаменателем .

От обыкновенных дробей к дробям общего вида

Знакомство с дробью происходит еще в 5 классе, когда проходят обыкновенные дроби. Из определения видно, что числителем и знаменателем являются натуральные числа.

Пример 1

К примеру 1 5 , 2 6 , 12 7 , 3 1 , которые можно записать как 1 / 5 , 2 / 6 , 12 / 7 , 3 / 1 .

После изучения действий с обыкновенными дробями имеем дело с дробями, которые имеют в знаменателе не одно натуральное число, а выражения с натуральными числами.

Пример 2

Например, 1 + 3 5 , 9 - 5 16 , 2 · 7 9 · 12 .

Когда имеем дело с дробями, где есть буквы или буквенные выражения, то записывается таким образом:

a + b c , a - b c , a · c b · d .

Определение 4

Зафиксируем правила сложения, вычитания, умножения обыкновенных дробей a c + b c = a + b c , a c - b c = a - b c , a b · v d = a · c b · d

Для вычисления зачастую необходимо приходить к переводу смешанных чисел в обыкновенные дроби. Когда целую часть обозначим как a , тогда дробная имеет вид b / c , получаем дробь вида a · c + b c , откуда понятно появления таких дробей 2 · 11 + 3 11 , 5 · 2 + 1 2 и так далее.

Черта дроби расценивается как знак деления. Поэтому запись можно преобразовать по-другому:

1: a - (2 · b + 1) = 1 a - 2 · b + 1 , 5 - 1 , 7 · 3: 2 · 3 - 4: 2 = 5 - 1 , 7 · 3 2 · 3 - 4: 2 , где частное 4: 2 можно заменить на дробь, тогда получим выражение вида

5 - 1 , 7 · 3 2 · 3 - 4 2

Вычисления с рациональными дробями занимают особое место в математике, так как в числителе и знаменателе могут быть не просто числовые значения, а многочлены.

Пример 3

Например, 1 x 2 + 1 , x · y - 2 · y 2 0 , 5 - 2 · x + y 3 .

Рациональные выражения рассматриваются как дроби общего вида.

Пример 4

Например, x · x + 1 4 x 2 · x 2 - 1 2 · x 3 + 3 , 1 + x 2 · y · (x - 2) 1 x + 3 · x 1 + 2 - x 4 · x 5 + 6 · x .

Изучение корней, степеней с рациональными показателями, логарифмов, тригонометрических функций говорит о том, что их применение появляется в заданных дробях вида:

Пример 5

a n b n , 2 · x + x 2 3 x 1 3 - 12 · x , 2 x 2 + 3 3 x 2 + 3 , ln (x - 3) ln e 5 , cos 2 α - sin 2 α 1 - 1 cos 2 α .

Дроби могут быть комбинированными, то есть иметь вид x + 1 x 3 log 3 sin 2 x + 3 , lg x + 2 lg x 2 - 2 · x + 1 .

Виды преобразований дробей

Для ряда тождественных преобразований рассматривают несколько видов:

Определение 5

  • преобразование, характерное для работы с числителем и знаменателем;
  • изменение знака перед дробным выражением;
  • приведение к общему знаменателю и сокращение дроби;
  • представление дроби в виде суммы многочленов.

Преобразование выражений в числителе и знаменателе

Определение 6

При тождественно равных выражениях имеем, что полученная дробь является тождественно равной исходной.

Если дана дробь вида A / B , то A и B являются некоторыми выражениями. Тогда при замене получим дробь вида A 1 / B 1 . Необходимо доказать справедливость равенства A / A 1 = B / B 1 при любом значении переменных, удовлетворяющих ОДЗ.

Имеем, что A и A 1 и B и B 1 тождественно равны, тогда их значения тоже равны. Отсюда следует, что при любом их значении A / B и A 1 / B 1 данные дроби будут равны.

Такое преобразование упрощает работу с дробями, если необходимо преобразовывать отдельно числитель и отдельно знаменатель.

Пример 6

Для примера возьмем дробь вида 2 / 18 , которую преобразуем к 2 2 · 3 · 3 . Для этого знаменатель раскладываем на простые множители. Дробь x 2 + x · y x 2 + 2 · x · y + y 2 = x · x + y (x + y) 2 имеет числитель вида x 2 + x · y , означает, что необходимо произвести замену на x · (x + y) , которое будет получено при вынесении за скобки общего множителя x . Знаменатель заданной дроби x 2 + 2 · x · y + y 2 свернуть по формуле сокращенного умножения. Тогда получим, что его тождественно равным выражением является (x + y) 2 .

Пример 7

Если дана дробь вида sin 2 3 · φ - π + cos 2 3 · φ - π φ · φ 5 6 ,тогда для упрощения необходимо числитель заменить 1 по формуле, а знаменатель привести к виду φ 11 12 . Тогда получим, что 1 φ 11 12 равна заданной дроби.

Изменение знака перед дробью, в ее числителе, знаменателе

Преобразования дробей – это также и замена знаков перед дробью. Рассмотрим некоторые правила:

Определение 7

  • при изменении знака числителя получаем дробь, которая равна заданной, причем буквенно это выглядит как _ - A - B = A B , где А и В являются некоторыми выражениями;
  • при изменении знака перед дробью и перед числителем, получаем, что - - A B = A B ;
  • при замене знака перед дробью и его знаменателя, получаем, что - A - B = A B .

Доказательство

Знак минуса в большинстве случаев рассматривается как коэффициент со знаком - 1 , а дробная черта является делением. Отсюда получаем, что - A - B = - 1 · A: - 1 · B . Сгруппировав множители, имеем, что

1 · A: - 1 · B = ((- 1) : (- 1) · A: B = = 1 · A: B = A: B = A B

После доказательства первого утверждения, обосновываем оставшиеся. Получим:

A B = (- 1) · (((- 1) · A) : B) = (- 1 · - 1) · A: B = = 1 · (A: B) = A: B = A B - A - B = (- 1) · (A: - 1 · B) = ((- 1) : (- 1)) · (A: B) = = 1 · (A: B) = A: B = A B

Рассмотрим примеры.

Пример 8

Когда необходимо выполнить преобразование дроби 3 / 7 к виду - 3 - 7 , - - 3 7 , - 3 - 7 , тогда аналогично выполняется с дробью вида - 1 + x - x 2 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x .

Преобразования выполняются следующим образом:

1) - 1 + x - x 2 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x = = - (- 1 + x - x 2) - 2 2 3 - ln x 2 + 3 x + sin 2 x · 3 x = = 1 - x + x 2 - 2 2 3 + ln (x 2 + 3) x - s i n 2 x · 3 x 2) - 1 + x - x 2 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x = = - - (- 1 + x - x 2) 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x = = - 1 - x + x 2 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x 3) - 1 + x - x 2 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x = = - - 1 + x - x 2 - 2 2 3 - ln (x 2 + 3) x + sin 2 x · 3 x = = - - 1 + x - x 2 - 2 2 3 + ln (x 2 + 3) x - sin 2 x · 3 x

Приведение дроби к новому знаменателю

При изучении обыкновенных дробей, мы коснулись основного свойства дробей, которое позволяет умножать, делить числитель и знаменатель на одно и то же натуральное число. Это видно из равенства a · m b · m = a b и a: m b: m = a b , где a , b , m являются натуральными числами.

Это равенство действительно для любых значений a , b , m и всех a , кроме b ≠ 0 и m ≠ 0 . То есть мы получаем, что если числитель дроби А / В с A и C , которые являются некоторыми выражениями, умножить или разделить на выражение M , не равное 0 , тогда получим дробь, тождественно равную начальной. Получаем, что A · M B · M = A B и A: M B: M = A B .

Отсюда видно, что преобразования основываются на 2 преобразованиях: приведении к общему знаменателю, сокращении.

При приведении к общему знаменателю производится умножение на одно и то же число или выражение числитель и знаменатель. То есть мы переходим к решению тождественной равной преобразованной дроби.

Рассмотрим примеры.

Пример 9

Если взять дробь x + 1 0 , 5 · x 3 и умножить на 2 , тогда получим, что новый знаменатель получится 2 · 0 , 5 · x 3 = x 3 , а выражение примет вид 2 · x + 1 x 3 .

Пример 10

Для приведения дроби 1 - x 2 · x 2 3 · 1 + ln x к другому знаменателю вида 6 · x · 1 + ln x 3 нужно, чтобы числитель и знаменатель быль умножен на 3 · x 1 3 · (1 + ln x) 2 . В итоге получаем дробь 3 · x 1 3 · 1 + ln x 2 · 1 - x 6 · x · (1 + ln x) 3

Такое преобразование как избавление от иррациональности в знаменателе также применимо. Оно избавляет от наличия корня в знаменателе, что упрощает процесс решения.

Сокращение дробей

Основное свойство – это преобразование, то есть ее непосредственное сокращение. При сокращении мы получаем упрощенную дробь. Рассмотрим на примере:

Пример 11

Или дробь вида x 3 · x 3 · x 2 · (2 x 2 + 1 + 3) x 3 · x 3 · 2 x 2 + 1 + 3 · 3 + 1 3 · x , где сокращение производится при помощи x 3 , x 3 , 2 x 2 + 1 + 3 или на выражение вида x 3 · x 3 · 2 x 2 + 1 + 3 . Тогда получим дробь x 2 3 + 1 3 · x

Сокращение дроби является простым, когда общие множители сразу явно видны. Практически это встречается не часто, поэтому предварительно необходимо проводить некоторые преобразования выражений такого вида. Бывают случаи, когда необходимо находить общий множитель.

Если имеется дробь вида x 2 2 3 · (1 - cos 2 x) 2 · sin x 2 · cos x 2 2 · x 1 3 , тогда необходимо применять тригонометрические формулы и свойства степеней для того, чтобы можно было преобразовать дробь к виду x 1 3 · x 2 1 3 · sin 2 x sin 2 x · x 1 3 . Это даст возможность сократить ее на x 1 3 · sin 2 x .

Представление дроби в виде суммы

Когда числитель имеет алгебраическую сумму выражений типа A 1 , A 2 , … , A n , а знаменатель обозначается B , тогда эта дробь может быть представлена как A 1 / B , A 2 / B , … , A n / B .

Определение 8

Для этого зафиксируем это A 1 + A 2 + . . . + A n B = A 1 B + A 2 B + . . . + A n B .

Данное преобразование в корне отличается от сложения дробей с одинаковыми показателями. Рассмотрим пример.

Пример 12

Дана дробь вида sin x - 3 · x + 1 + 1 x 2 , которую мы представим как алгебраическая сумма дробей. Для этого представим как sin x x 2 - 3 · x + 1 x 2 + 1 x 2 или sin x - 3 · x + 1 x 2 + 1 x 2 или sin x x 2 + - 3 · x + 1 + 1 x 2 .

Любая дробь, имеющая вид А / В представляется в виде суммы дробей любым способом. Выражение A в числителе может быть уменьшено или увеличено на любое число или выражение А 0 , которое даст возможность прейти к A + A 0 B - A 0 B .

Разложение дроби на простейшие является частным случаем для преобразования дроби в сумму. Чаще всего его применяют при сложных вычислениях для интегрирования.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter


Материал этой статьи представляет собой общий взгляд на преобразование выражений, содержащих дроби. Здесь мы рассмотрим основные преобразования, которые характерны для выражений с дробями.

Навигация по странице.

Выражения с дробями и дробные выражения

Для начала проясним, с преобразованием выражений какого вида мы собрались разбираться.

В заголовке статьи фигурирует говорящее за себя словосочетание «выражения с дробями ». То есть, ниже речь пойдет о преобразовании числовых выражений и выражений с переменными, в записи которых присутствует хотя бы одна дробь .

Сразу заметим, что после выхода в свет статьи «преобразование дробей: общий взгляд » нам уже не интересны отдельные дроби. Таким образом, дальше мы будем рассматривать суммы, разности, произведения, частные и более сложные выражения с корнями, степенями, логарифмами, объединяет которые лишь наличие хотя бы одной дроби.

И еще оговоримся про дробные выражения . Это не то же самое, что выражения с дробями. Выражения с дробями – более общее понятие. Не каждое выражение с дробями есть дробное выражение. Например, выражение не является дробным выражением, хотя и содержит дробь, это целое рациональное выражение . Так что не стоит называть выражение с дробями дробным выражением, не будучи полностью уверенным, что оно является таковым.

Основные тождественные преобразования выражений с дробями

Пример.

Упростите выражение .

Решение.

В данном случае можно раскрыть скобки , что даст выражение , в котором присутствуют подобные слагаемые и , а также −3 и 3 . После их приведения получим дробь .

Покажем краткую форму записи решения:

Ответ:

.

Работа с отдельными дробями

Выражения, о преобразовании которых мы говорим, отличаются от других выражений главным образом наличием дробей. А наличие дробей требует инструментов для работы с ними. В этом пункте мы обсудим преобразование отдельных дробей, входящих в запись данного выражения, а в следующем пункте перейдем к выполнению действий с дробями, составляющими исходное выражение.

С любой дробью, которая является составной частью исходного выражения, можно выполнять любое из преобразований, обозначенных в статье преобразование дробей . То есть, можно взять отдельную дробь, поработать с ее числителем и знаменателем, сократить ее, привести к новому знаменателю и т.д. Понятно, что при этом преобразовании выбранная дробь заменится тождественно равной ей дробью, а исходное выражение – тождественно равным ему выражением. Давайте рассмотрим пример.

Пример.

Преобразовать выражение с дробью к более простому виду.

Решение.

Преобразование начнем с того, что поработаем с дробью . Для начала раскроем скобки и приведем подобные слагаемые в числителе дроби: . Теперь напрашивается вынесение за скобки общего множителя x в числителе и последующее сокращение алгебраической дроби : . Остается лишь подставить полученный результат вместо дроби в исходное выражение, что дает .

Ответ:

.

Выполнение действий с дробями

Частью процесса преобразования выражений с дробями часто является выполнение действий с дробями . Они проводятся в соответствии с принятым порядком выполнения действий. Также стоит иметь в виду, что любое число или выражение всегда можно представить в виде дроби со знаменателем 1 .

Пример.

Упростите выражение .

Решение.

К решению поставленной задачи можно подходить с разных сторон. Мы в контексте разбираемой темы пойдем путем выполнения действий с дробями. Начнем с умножения дробей:

Теперь произведение запишем в виде дроби со знаменателем 1 , после чего проведем вычитание дробей:

При желании и необходимости можно еще освободиться от иррациональности в знаменателе , на чем можно закончить преобразования.

Ответ:

Применение свойств корней, степеней, логарифмов и т.п.

Класс выражений с дробями очень широк. Такие выражения помимо собственно дробей, могут содержать корни, степени с различными показателями, модули, логарифмы, тригонометрические функции и т.п. Естественно, при их преобразовании применяются соответствующие свойства.

Применимо к дробям, стоит выделить свойство корня из дроби , свойство дроби в степени , свойство модуля частного и свойство логарифма разности .

Для наглядности приведем несколько примеров. Например, в выражении может быть полезно на базе свойств степени первую дробь заменить степенью , что в дальнейшем позволяет представить выражение в виде квадрата разности. При преобразовании логарифмического выражения можно логарифм дроби заменить разностью логарифмов, что в дальнейшем позволяет привести подобные слагаемые и тем самым упростить выражение: . Преобразование тригонометрических выражений может потребовать заменить отношение синуса к косинусу одного и того же угла тангенсом. Также возможно придется от половинного аргумента по соответствующим формулам переходить к целому аргументу, тем самым избавляясь от аргумента-дроби, например, .

Применение свойств корней, степеней и т.п. к преобразованию выражений более подробно освещено в статьях:

  • Преобразование иррациональных выражений с использованием свойств корней ,
  • Преобразование выражений с использованием свойств степеней ,
  • Преобразование логарифмических выражений с использованием свойств логарифмов ,
  • Преобразование тригонометрических выражений .

Десятичные числа, такие как 0,2; 1,05; 3,017 и т.п. как слышатся, так и пишутся. Ноль целых две десятых, получаем дробь . Одна целая пять сотых, получаем дробь . Три целых семнадцать тысячных, получаем дробь . Цифры до запятой в десятичном числе - это целая часть дроби. Цифра после запятой - числитель будущей дроби. Если после запятой однозначное число - в знаменателе будет 10, если двухзначное - 100, трехзначное - 1000 и т.д. Некоторые полученные дроби можно сократить . В наших примерах

Преобразование дроби в десятичное число

Это обратное предыдущему преобразованию. Десятичная дробь чем характерна? У неё в знаменателе всегда стоит 10, или 100, или 1000, или 10000 и так далее. Если ваша обычная дробь имеет такой знаменатель, проблем нет. Например, или

Если дробь, например . В этом случае необходимо воспользоваться основным свойством дроби и преобразовать знаменатель до 10 или 100, или 1000 ... В нашем примере, если домножить числитель и знаменатель на 4, получим дробь , которую возможно записать в виде десятичного числа 0,12.

Некоторые дроби проще разделить, чем преобразовать знаменатель. Например,

Некоторые дроби невозможно преобразовать в десятичные числа!
Например,

Преобразование смешанной дроби в неправильную

Смешанную дробь, например , легко преобразовать в неправильную. Для этого необходимо целую часть умножить на знаменатель (низ) и сложить с числителем (верх), знаменатель (низ) оставить без изменения. То есть

При преобразовании смешанной дроби в неправильную, можно вспомнить, что Можно использовать сложение дробей

Преобразование неправильной дроби в смешанную (выделение целой части)

Неправильную дробь можно перевести в смешанную, выделив целую часть. Рассмотрим пример, . Определяем, сколько целых раз "3" вмещается в "23". Или 23 делим на 3 на калькуляторе, целое число до запятой - искомое. Это "7". Далее определяем числитель уже будущей дроби: полученную "7" умножаем на знаменатель "3" и из числителя "23" вычитаем полученное. Как бы находим то лишнее, что остается от числителя "23", если изъять максимальное количество "3". Знаменатель оставляем без изменения. Все сделано, записываем результат

Выбор редакции
Всем огромный привет! Спешу опять порадовать вас самым популярным августовским блюдом. Угадайте с трех раз! О чем я хочу написать? Каких...

Екатерина II – великая российская императрица, царствование которой стало самым значимым периодом в русской истории. Эпоха Екатерины...

Как выяснила «Газета.Ru», эксперты, расследующие катастрофу Robinson R-66 на Телецком озере в Республике Алтай, склоняются к версии, что...

Во время германской компании на Востоке, Messershmitt BF 109 был основным самолетом истребительной авиации Люфтваффе. Несмотря на их...
Гороскоп совместимости: цветы по знакам зодиака лев - самое полное описание, только доказанные теории, основанные на астрологических...
Символ рока и судьбы, предотвратить которую невозможно. Руна Наутиз означает вынужденные обстоятельства, ограничения, несвободу выбора....
Как приготовить лаваш в кляре Сегодня мы предлагаем вам приготовить блюдо, способное стать и замечательной закуской на праздничном столе,...
Чудеса Пресвятой Богородицы в наши дни не перестают удивлять и радовать христиан, а ее помощь приходит всем христианам, которые молятся...
Варенье из крыжовника в мультиварке готовить довольно легко, оно отличается от обычного лакомства, сваренного на плите, лишь своей...