Зависимость мощности и к.п.д. насоса от его объёмной производительности. Компоновочные схемы тна Технологический процесс изготовления лопатки


ТНА подразделяются на одновальные и многовальные. В одновальных ТНА турбина и насосы располагаются на одном валу. Преимуществом ТНА, выполненных по такой схеме, является простота конструкции и малый вес. В качестве недостатка необходимо отметить, что только один из насосов (как правило, насос окислителя) работает при оптимальном числе оборотов. При этом насос горючего эксплуатируется при пониженных значениях КПД.

Различают следующие компоновочные схемы ТНА, рис.57.

При трехвальной схеме ТНА числа оборотов насосов и турбины независимы друг от друга и могут выбираться из условий оптимальности работы насосов. Однако, наличие редукторов, работающих в сложных условиях (высокие значения окружной скорости, сложность обеспечения эффективной системы смазки и охлаждения), в некоторых случаях сводит к минимуму выигрыш от повышения значений КПД насосов.

Одновальные


Трёхвальная


Компоновочные схемы ТНА

Наибольшее распространение в ЖРДУ получили одновальные схемы ТНА.

5.3. Устройство центробежного насоса

В ТНА ЖРД обычно в качестве основных применяются центро­бежные насосы. Основными достоинствами, определяющими преимущественное использование этих видов насосов в ЖРД, являются:

Обеспечение высоких давлений подачи и производительности при малых габаритах и массе;

Возможность работы на агрессивных и низкокипящих компо­нентах;

Возможность работы с большим числом оборотов и удобство использования турбины для их привода.

На рис.58 показана схема одноступенчатого центробежного насоса. Жидкость по входному патрубку 1 подается на вращающееся колесо (крыльчатку) 2. В колесе насоса жидкость движется по каналу, образованному стенками колеса и лопатками 3. Усилие, действующее со стороны лопаток колеса на жидкость, заставляет ее двигаться так, что запас энергии в единице массы жидкости увеличивается. При этом происходит прирост как потенциальной энергии (статического давления), так и кинетической энергии жидкости.

Рис.58

Схема центробежного насоса:

1 - входной патрубок; 2 - колесо насоса (крыльчатка); 3 - лопатки;

4 - диффузор; 5 - лопатки диффузора; 6 - сборник или улитка; 7 - переднее уплотнение;

8 - подшипник вала; 9 - уплотнение подшипника

На выходе из колеса жидкость поступает в диффузор 4, где уменьшается ее абсолютная скорость и до­полнительно возрастает давление. Простейший диффузор состоит из гладких дисков, составляющих его стенки, и называется безлопаточным. Лопаточный диффузор имеет неподвижные лопатки 5 (на рис. 58 пока­заны пунктиром), которые способствуют более быстрому гашению ско­рости потока. Пройдя диффузор, жидкость поступает в спиральный ка­нал (улитку) 6, назначение которого состоит в том, чтобы собирать жидкость, выходящую из колеса, а также уменьшать ее скорость. По нагнетающему патрубку жидкость подается в сеть.

Чтобы уменьшить перетекание жидкости из полости высокого дав­ления (диффузора, улитки) в область низкого давления, в насосе де­лаются уплотнения 7.

Рис.59

Схемы центробежных насосов:

а-с осевым входом; б- со спиральным входом;

в -с двухсторонним входом; г -многоступенчатый насос

Центробежные насосы выполняют с осевым, спиральным и двой­ным входом, одно-и многоступенчатые. Выбор осевого или спирального входа (рис.59, а,б) определяется в первую очередь условиями компо­новки ТНА и двигательной установки. Двойной вход (рис.59, в ) выпол­няют при больших расходах для уменьшения скорости на входе и тем самым для улучшения антикавитационных свойств насоса. Многоступен­чатые насосы (рис.59, г ) применяют при необходимости получения особенно больших напоров.

Обычно корпуса насосов выполняются литьем из высокопрочных алюминиевых сплавов, а в случае высоких давлений - из стали. Количество профилированных лопаток крыльчатки составляет не более 8, а их толщина лежит в диапазоне 2 ¸ 5 мм.

5.4. Крыльчатки насосов

Различают крыльчатки, открытого и закрытого типов, рис.60 (а, б).

Открытая крыльчатка используется в насосах с малым расходом и давлением компонента. Для крыльчатки такого типа характерны значительные потери, обусловленные перетеканием компонента из области повышенного давления (на выходе из насоса) в область пониженного (на входе в насос). Крыльчатка состоит из диска 1 и выполненных на нем лопаток 2.

В закрытых крыльчатках на торцевых поверхностях лопаток устанавливается крышка 3, которая может быть выполнена за единое целое с крыльчаткой. В крыльчатках такого типа потери на перетекание компонента значительно меньше, чем в открытых крыльчатках. Обычно крыльчатки изготавливают литьем. Число профилированных лопаток, как правило не превышает 8, а их толщина менее 5мм. Крыльчатки, представленные на рис.60, относятся к крыльчаткам с односторонним подводом компонента.

Для снижения расхода компонента через лопаточный канал крыльчатки (с целью исключения возникновения процесса кавитации) используются крыльчатки с двухсторонним подводом компонента, рис.61.

Рис.60

Односторонние крыльчатки:

а- открытого типа; б – закрытого типа

Рис.61

Двухсторонняя крыльчатка

8.5. Уплотнения крыльчаток

С целью снижения перетечек жидкости в крыльчатках насосов устанавливаются уплотнения следующих типов: щелевые, лабиринтные и плавающие, рис.62 а,б,в, соответственно.

Принцип работы щелевых уплотнений основан на обеспечении высокого гидравлического сопротивления кольцевой щели между графитовым вкладышем, установленным в корпусе насоса, и проточкой, выполненной во входном сечении диска. Конструкция данного уплотнения допускает до 15% перетечек от объема перекачиваемой жидкости, в то время как лабиринтное, рис.62 б, и плавающее (набор фторопластовых и алюминиевых шайб, установленных во входном сечении крыльчатки), рис.62 в, - до 10 % и 5 %, соответственно.

Рис.62

Уплотнения крыльчаток:

а – щелевое; б – лабиринтное; в - плавающее

5.5. Турбина ТНА

Одним из основных элементов ТНА является газовая турбина. В турбине потенциальная энергия продуктов сгорания из газогенератора или паров охладителя преобразуется в механическую работу турбины. Турбина предназначена для приведение во вращение насосов ТНА. Турбина состоит из соплового аппарата 1, рабочего колеса 2 с двумя рядами рабочих лопаток 3 и 4, направляющего аппарата 5 и корпуса турбины 6 с выходным патрубком 7, рис.75.

Первая ступень турбины представляет совокупность соплового аппарата 1 и лопаток рабочего колеса 3, вторая образована неподвижными лопатками направляющего аппарата 5 и вторым рядом рабочих лопаток 4.

Преобразование энтальпии газового потока в механическую энергию вращения вала осуществляется в два этапа: энтальпии газового потока – в кинетическую энергию струи (в сопловом аппарате); кинетической энергии струи – в механическую энергию вращения вала (на рабочем колесе).

Рис.75

Конструкция турбины ТНА

Валы турбонасосных агрегатов (ТНА) работают при высоких нагрузках и больших числах оборотов. Для об­легчения веса их делают полыми. Наибольшие знакопе­ременные напряжения в металле вала возникают на его наружной поверхности. При этом всякого вида резкие переходы, следы от режущего инструмента и другие де­фекты поверхности являются концентраторами напряже­ний. В этих местах при работе могут образоваться тре­щины, что приведет к поломке вала. Поэтому особое вни­мание уделяется чистоте отделки поверхности вала с вве­дением в некоторых случаях упрочняющих операций. От­делке подвергаются не только места под подшипники, уплотнения, посадки, но и все другие участки вала, не сопрягаемые с другими деталями.

Большие числа оборотов (10000-20000 об/мин и бо­лее) заставляют конструктора назначать очень жесткие допуски на соосность шеек и посадочных мест, точность расположения осевого отверстия, разностенность и дру­гие размеры. Малейшие геометрические погрешности приводят к неравномерному распредзелению вращающих­ся масс металла, что вызывает вибрации и тряску ТНА.

5.6. Требования, предъявляемые к газогенераторам

Величина тяги ЖРД, как известно, является линейной функцией секундного расхода топлива. Секундный расход топлива для каждого конкретного двигателя с насосной си­стемой подачи компонентов зависит от мощности, развиваемой турбиной. Мощность турбины полностью определяется секундным рас­ходом и параметрами рабочего тела на входе в турбину, т. е. на выходе из газогенератора. Поэтому газогенератор являет­ся устройством, задающим режим работы всей двигательной установки. Это обстоятельство и определяет особые требова­ния к данному звену системы топливоподачи (помимо общих требований, предъявляемых ко всем агрегатам ЖРД, вне зависимости от специфики их работы). Эти требования сводятся к следующему.

1. Высокая стабильность работы. Это значит, что газоге­нератор на всех режимах работы двигателя должен возмож­но точнее обеспечивать заданный секундный расход газа и при этом значения параметров газа (состав, давление, темпе­ратура и др.) не должны выходить за определенные (допу­стимые) пределы. Чем стабильнее работа газогенератора, тем меньшие нагрузки испытывают в полете системы управления работой двигателя, а это повышает надежность двигателя и точность стрельбы.

Особенно важна стабильность работы газогенератора для ракет с нерегулируемыми ЖРД и ракет, управление даль­ностью полета которых осуществляется только по скорости полета в конце активного участка траектории. В последнем случае отклонение координат конца активного участка траек­тории, вызванное отклонением тяги двигателя от расчетного значения, вследствие нестабильной работы газогенератора, целиком перейдет в отклонение точки падения ракеты от цели.

2. Простота управления рабочим процессом в широком диа­пазоне изменения его параметров. Это требование также об­условлено регулирующим воздействием газогенератора на двигатель и необходимостью изменения режима работы дви­гателя в процессе одного запуска (при регулировании тяги во время старта и в полете, при переходе с главной ступени тяги на конечную и т. д.).

3. Высокая работоспособность генераторного газа, об­условливающая либо минимальную затрату энергии (и соот­ветственно минимальный расход топлива) на привод ТНА, либо повышение мощности ТНА. Это требование выдвигает­ся в связи с тем, что удель­ный импульс двигателя определяется отношением тяги ко всему секундному расходу отбрасываемой массы. В понятие же «отбрасываемая масса» входят как продукты сгорания топли­ва в камере, так и отработанный после турбины газ. Для ЖРД, у которых этот газ выбрасывается в атмосферу и раз­вивает удельный импульс меньший, чем продукты сгорания топ­лива, истекающие из камеры двигателя, решающим условием повышения экономичности двигателя является уменьшение расхода топлива на привод ТНА. Для ЖРД с дожиганием ге­нераторного газа главное-увеличение мощности ТНА, так как это позволяет увеличить давление в камере и при задан­ном значении давления на срезе сопла повысить степень расширения отбрасываемых продук­тов сгорания, т. е. увеличить термический КПД камеры. Уменьшение расхода топлива на привод ТНА и увеличение мощности ТНА зависят от количества энергии, отдаваемой турбине одним килограммом рабочего тела. Эта энергия рав­на, как известно, произведению относительного эффективного КПД турбины на располагаемый адиабатический теплоперепад.

5.7. Классификация газогенераторов

Основу классификации газогенераторов составляет способ получения генераторного газа. В настоящее время распро­странены три способа газогенерации.

1. Разложение (с помощью катализаторов или без них) вещества, способного после внешнего инициирующего воздей­ствия перейти к дальнейшему устойчивому самопроизвольному рас­паду, сопровождающемуся выделением значительного коли­чества тепловой энергии и газообразных продуктов разложе­ния. Таким веществом может быть как компонент основного топлива двигателя, так и специальное средство газогенера­ции, запасенное только для этой цели на борту ракеты. Газо­генераторы, в которых реализуется этот процесс, называются однокомпонентными. В дальнейшем их различают главным образом по виду разлагаемого вещества (перекисеводородные, гидразиновые, на твердом топливе и т. п.).

2. Сжигание жидкого топлива, состоящего из двух ком­понентов. Лучше всего использовать для этой цели основное топливо двигателя, так как при этом существенно упрощает­ся его подача в газогенератор и улучшаются условия экс­плуатации ракеты. Газогенераторы этого типа называются двухкомпонентными.

3. Испарение жидкости в тракте охлаждения камеры дви­гателя. При этом способе получения рабочего тела турбины одновременно решается и задача охлаждении стенок ка­меры двигателя. Газогенераторы этого типа называют паро­генераторами, а схемы двигателей-безгенераторными. Схе­мы парогенераторов подразделяются на циркуляционные и со сменой рабочего тела. В первых произвольное рабочее тело (например, вода) циркулирует по замкнутому контуру «тракт охлаждения камеры - турбина - конденсатор - насос - тракт охлаждения камеры», превращаясь попеременно то в пар, то в жидкость в различных его частях. В схемах со сме­ной рабочего тела эта циркуляция отсутствует. Рабочее тело после турбины выводится из цикла. Очевидно, что непосред­ственный выброс отработавшего газа в атмосферу заметно ухудшил бы экономичность двигателя, так как удельная тяга выхлопных патрубков всегда меньше удельной тяги ка­меры двигателя. Чтобы устранить эти потери, в тракт охла­ждения камеры обычно посылается один из компонентов топ­лива. После испарения и срабатывания в турбине он направ­ляется в камеру двигателя, где и сжигается вместе со вторым компонентом. Таким образом, безгенераторные двигатели выполняются по схеме с дожиганием рабочего тела тур­бины.

По конструкции системы газогенерации значительно, отли­чаются друг от друга, но тем не менее в каждой из них мож­но выделить следующие общие основные элементы:

Газогенератор;

Топливоподающие устройства;

Автоматику.

В газогенераторе (иногда называемом реактором) непо­средственно образуется рабочее тело турбины - газ или пар заданных параметров. Топливоподающие устройства обеспечивают поступление средств газогенерации (исходных ве­ществ) в реактор. Автоматика осуществляет регулирование рабочего процесса, а также запуск и выключение газогене­ратора. Иногда (например, при работе на основном топли­ве) система газогенерации не имеет самостоятельных топливоподающих устройств. В этом случае питание газоге­нератора топливом обеспечивается системой подачи двига­теля.

В ЖРД нашли применение следующие типы газогенераторов (ГГ):

Твердотопливный (ТГГ);

Гибридный (ТГГ);

Однокомпонентный жидкостный (однокомпонетный ЖГГ);

Двухкомпонентный жидкостный (двух­компонентный ЖГГ);

Испарительный жидкостный (испарительный ЖГГ);

1) Изучение схемы и принципа работы жидкостного ракетного двигателя (ЖРД).

2) Определение изменение параметров рабочего тела вдоль тракта камеры ЖРД.

  1. ОБЩИЕ СВЕДЕНИЯ О ЖРД

2.1. Состав ЖРД

Реактивным двигателем называется техническое устройство, создающее тягу в результате истечения из него рабочего тела. Реактивные двигатели обеспечивают ускорение перемещающихся аппаратов различных типов.

Ракетный двигатель – это реактивный двигатель, использующий для работы только вещества и источники энергии, имеющиеся в запасе на борту перемещающегося аппарата.

Жидкостной ракетный двигатель (ЖРД) – это ракетный двигатель, использующий для работы топливо (первичный источник энергии и рабочее тело), находящееся в жидком агрегатном состоянии.

ЖРД в общем случае состоит из:

2- турбонасосных агрегатов (ТНА);

3- газогенераторов;

4- трубопроводов;

5- агрегатов автоматики;

6- вспомогательных устройств

Один или несколько ЖРД, в совокупности с пневмогидравлической системой (ПГС) подачи топлива в камеры двигателя и вспомогательными агрегатами ступени ракеты, составляют жидкостную ракетную двигательную установку (ЖРДУ).

В качестве жидкого ракетного топлива (ЖРТ) используется вещество или несколько веществ (окислитель, горючее), которые способны в результате экзотермических химических реакций образовывать высокотемпературные продукты сгорания (разложения). Эти продукты являются рабочим телом двигателя.

Каждая камера ЖРД состоит из камеры сгорания и сопла. В камере ЖРД первичная химическая энергия жидкого топлива преобразуется в конечную кинетическую энергию газообразного рабочего тела, в результате истечения которого создается реактивная сила камеры.

Отдельный турбонасосный агрегат ЖРД состоит из насосов и приводящей их в действия турбины. ТНА обеспечивает подачу компонентов жидкого топлива в камеры и газогенераторы ЖРД.

Газогенератор ЖРД является агрегатом, в котором основное или вспомогательное топливо преобразуется в продукты газогенерации, используемые в качестве рабочего тела турбины и рабочих тел системы наддува баков с компонентами ЖРТ.

Система автоматики ЖРД представляет собой совокупность устройств (клапанов, регуляторов, датчиков и т.п.) различных типов: электрического, механического, гидравлического, пневматического, пиротехнического и др. Агрегаты автоматики обеспечивают запуск, управление, регулирование и останов ЖРД.

Параметры ЖРД

Основными тяговыми параметрами ЖРД являются:


Реактивная сила ЖРД - R - результирующая газо- и гидродинамических сил, действующих на внутренние поверхности ракетного двигателя при истечении из него вещества;

Тяга ЖРД - Р - равнодействующая реактивной силы ЖРД (R) и всех сил давления окружающей среды, которые действуют на внешние поверхности двигателя за исключением сил внешнего аэродинамического сопротивления;

Импульс тяги ЖРД - I - интеграл от тяги ЖРД по времени его работы;

Удельный импульс тяги ЖРД - I у - отношение тяги (Р) к массовому расходу топлива () ЖРД.

Основными параметрами, которые характеризуют процессы, протекающие в камере ЖРД, служат давление (р), температура (Т) и скорость потока (W) продуктов сгорания (разложения) жидкого ракетного топлива. При этом особо выделяются значения параметров на входе в сопло (индекс сечения «с»), а также в критическом («*») и выходном («а») сечениях сопла.

Расчет значений параметров в различных сечениях тракта сопла ЖРД и определение тяговых параметров двигателя проводится по соответствующим уравнениям термогазодинамики. Приближенная методика подобного расчета рассмотрена в 4 разделе данного пособия.

  1. СХЕМА И ПРИНЦИП РАБОТЫ ЖРД «РД-214»

3.1. Общая характеристика ЖРД «РД-214»

Жидкостной ракетный двигатель «РД-214» применяется в отечественной практике с 1957 года. С 1962 года он устанавливается на 1-ой ступени многоступенчатых ракетах-носителях «Космос», с помощью которых на околоземные орбиты выведены многие спутники серий «Космос» и «Интеркомос».

ЖРД «РД-214» имеет насосную систему подачи топлива. Двигатель работает на высококипящем азотно-кислотном окислителе (растворе окислов азота в азотной кислоте) и углеводородном горючем (продуктах переработки керосина). Для газогенератора применяется специальный компонент – жидкая перекись водорода.

Основные параметры двигателя имеют следующие значения:

Тяга в пустоте Р п = 726 кН;

Удельный импульс тяги в пустоте I уп = 2590 Н×с/кг;

Давление газа в камере сгорания р к = 4,4 МПа;

Степень расширения газа в сопле e = 64

ЖРД «РД-214», (рис. 1) состоит из:

Четырех камер (поз. 6);

Одного турбонасосного агрегата (ТНА) (поз. 1, 2, 3, 4);

Газогенератора (поз. 5);

Трубопровода;

Агрегатов автоматики (поз. 7, 8)

ТНА двигателя состоит из насоса окислителя (поз. 2), насоса горючего (поз. 3), насоса перекиси водорода (поз. 4) и турбины (поз. 1). Ротора (вращающиеся части) насосов и турбины связаны одним валом.

Агрегаты и узлы, обеспечивающие подачу компонентов в камеру двигателя, газогенератор и турбину, объединяются в три отдельные системы – магистрали:

Систему подачи окислителя

Систему подачи горючего

Систему парогазогенерации перекиси водорода.


Рис.1. Схема жидкостного ракетного двигателя

1 – турбина; 2 – насос окислителя; 3 – насос горючего;

4 – насос перекиси водорода; 5 – газогенератор (реактор);

6 – камера двигателя; 7, 8 – элементы автоматики.

3.2. Характеристика агрегатов ЖРД «РД-214»

3.2.1. Камера ЖРД

Четыре камеры ЖРД связаны в единый блок по двум сечениям с помощью болтов.

Каждая камера ЖРД (поз. 6) состоит из смесительной головки и корпуса. Смесительная головка включает верхнее, среднее и нижнее (огневое) днища. Между верхним и средним днищами образована полость для окислителя, между средним и огневым – полость для горючего. Каждая из полостей с помощью соответствующих форсунок связана с внутренним объемом корпуса двигателя.

В процессе работы ЖРД через смесительную головку и ее форсунки осуществляется подача, распыл и смешение жидких компонентов топлива.

Корпус камеры ЖРД включает часть камеры сгорания и сопло. Сопло ЖРД сверхзвуковое, имеет сходящуюся и расходящуюся части.

Корпус камеры ЖРД двухстенный. Внутренняя (огневая) и наружная (силовая) стенки корпуса связаны между собой проставками. При этом, с помощью проставок, между стенками образованы каналы тракта жидкостного охлаждения корпуса. В качестве охладителя используется горючее.

Во время работы двигателя горючее подается в тракт охлаждения через специальные патрубки коллектора, расположенного на конечной части сопла. Пройдя тракт охлаждения, горючее поступает в соответствующую полость смесительной головки и через форсунки вводится в камеру сгорания. Одновременно через другую полость смесительной головки и соответствующие форсунки, в камеру сгорания поступает окислитель.

В объеме камеры сгорания происходит распыл, смешение и сгорание жидких компонентов топлива. В результате образуется высокотемпературное газообразное рабочее тело двигателя.

Затем в сверхзвуковом сопле осуществляется преобразование тепловой энергии рабочего тела в кинетическую энергию его струи, при истечении которой создается тяга ЖРД.

3.2.2. Газогенератор и турбонасосный агрегат

Газогенератор (рис. 1, поз. 5) является агрегатом, в котором жидкая перекись водорода в результате экзотермического разложения преобразуется в высокотемпературное парообразное рабочее тело турбины.

Турбонасосный агрегат обеспечивает напорную подачу жидких компонентов топлива в камеру и газогенератор двигателя.

ТНА состоит из (рис. 1):

Шнекоцентробежного насоса окислителя (поз. 2);

Шнекоцентробежного насоса горючего (поз. 3);

Центробежного насоса перекиси водорода (поз. 4);

Газовой турбины (поз. 1).

Каждый насос и турбина имеет неподвижный статор и вращающийся ротор. Роторы насосов и турбины имеют общий вал, состоящий из двух частей, которые связаны рессорой.

Турбина (поз. 1) служит приводом насосов. Основными элементами статора турбины являются корпус и сопловой аппарат, а ротора – вал и рабочее колесо с лопатками. В процессе работы, на турбину из газогенератора поступает перекисный парогаз. При прохождении парогаза через сопловой аппарат и лопатки рабочего колеса турбины, его тепловая энергия преобразуется в механическую энергию вращения колеса и вала ротора турбины. Отработанный парогаз собирается в выходном коллекторе корпуса турбины и сбрасывается в атмосферу через специальные отбросные сопла. При этом создается некоторая дополнительная тяга ЖРД.

Насосы окислителя (поз. 2) и горючего (поз. 3) шнекоцентробежного типа. Основными элементами каждого из насосов является корпус и ротор. Ротор имеет вал, шнек и центробежное колесо с лопатками. В процессе работы от турбины к насосу через общий вал подводится механическая энергия, обеспечивающая вращения ротора насоса. В результате воздействия лопаток шнека и центробежного колеса на прокачиваемую насосами жидкость (компонент топлива), механическая энергия вращения ротора насоса преобразуется в потенциальную энергию давления жидкости, что обеспечивает подачу компонента в камеру двигателя. Шнек перед центробежным колесом насоса устанавливается для предварительного повышения давления жидкости на входе в межлопаточные каналы рабочего колеса с целью предотвращения холодного вскипания жидкости (кавитации) и нарушения ее сплошности. Нарушения сплошности потока компонента может вызвать неустойчивость процесса сгорания топлива в камере двигателя, а, следовательно, и неустойчивость работы ЖРД в целом.

Для подачи в газогенератор перекиси водорода применяется центробежный насос (поз. 4). Сравнительно малый расход компонента создает условия бескавитационной работы центробежного насоса без установки перед ним шнекового преднасоса.

3.3. Принцип работы двигателя

Пуск, управление и остановка двигателя выполняется автоматически по электрическим командам с борта ракеты на соответствующие элементы автоматики.

Для начального воспламенения компонентов топлива используется специальное пусковое горючее, самовоспламеняющиеся с окислителем. Пусковое горючее первоначально заполняет небольшой участок трубопровода перед насосом горючего. В момент запуска ЖРД в камеру поступает пусковое горючее и окислитель, происходит их самовоспламенение и лишь затем в камеру начинают подаваться основные компоненты топлива.

В процессе работы двигателя окислитель последовательно проходит элементы и агрегаты магистрали (системы), включающей:

Разделительный клапан;

Насос окислителя;

Клапан окислителя;

Смесительную головку камеры двигателя.

Поток горючего протекает по магистрали, включающей:

Разделительные клапана;

Насос горючего;

Коллектор и тракт охлаждения камеры двигателя;

Смесительную головку камеры.

Перекись водорода и образующийся парогаз последовательно проходят элементы и агрегаты системы парогазогенерации, включающей:

Разделительный клапан;

Насос перекиси водорода;

Гидроредуктор;

Газогенератор;

Сопловой аппарат турбины;

Лопатки рабочего колеса турбины;

Коллектор турбины;

Отбросные сопла.

В результате непрерывной подачи турбонасосным агрегатом компонентов топлива в камеру двигателя, их сгорание с образованием высокотемпературного рабочего тела и истечения рабочего тела из камеры, создается тяга ЖРД.

Варьирование значения тяги двигателя в процессе его работы обеспечивается с помощью изменения расхода перекиси водорода, подаваемой в газогенератор. При этом изменяется мощность турбины и насосов, а, следовательно, и подача компонентов топлива в камеру двигателя.

Останов ЖРД производится в две ступени с помощью элементов автоматики. С основного режима двигатель сначала переводится на конечный режим работы с меньшей тягой и лишь затем выключается полностью.

  1. МЕТОДИКА ПРОВЕДЕНИЯ РАБОТЫ

4.1. Объем и порядок выполнения работы

В процессе выполнения работы последовательно выполняются следующие действия.

1) Изучается схема ЖРД «РД-214». Рассматривается назначение и состав ЖРД, конструкция агрегатов, принцип работы двигателя.

2) Производится измерение геометрических параметров сопла ЖРД. Находится диаметр входного («с»), критического («*») и выходного («а») сечений сопла (D с, D * , D а).

3) Рассчитывается значение параметров рабочего тела ЖРД во входном, критическом и выходном сечениях сопла ЖРД.

По результатам расчетов строится обобщенный график изменения температуры (Т), давления (р) и скорости (W) рабочего тела вдоль тракта сопла (L) ЖРД.

4) Определяются тяговые параметры ЖРД при расчетном режиме работы сопла ().

4.2. Исходные данные для расчета параметров ЖРД «РД-214»

Давление газа в камере (см. вариант)

Температура газов в камере

Газовая постоянная

Показатель изоэнтропы

Функция

Принимается, что процессы в камере протекают без потерь энергии. При этом коэффициенты потерь энергии в камере сгорания и сопле соответственно равны

Режим работы сопла расчетный (индекс «r »).

Посредством измерения определяются:

Диаметр критического сечения сопла ;

Диаметр выходного сечения сопла .

4.3. Последовательность расчета параметров ЖРД

А) Параметры в выходном сечении сопла («а») определяются в следующей последовательности.

1) Площадь выходного сечения сопла

2) Площадь критического сечения сопла

3) Геометрическая степень расширения газа

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Каково значение ЖРД «РД-214»?

2. Перечислите основные системы изученного ЖРД.

3. Каково назначение камеры ЖРД, из каких частей она состоит?

4. Каково назначение ТНА, перечислите его основные агрегаты?

5. Каково назначение и состав системы парогазогенерации ЖРД «РД-214»?

6. Опишите последовательность прохождения рабочего тела турбины.

7. Перечислите основные тяговые параметры ЖРД; назовите их значения для ЖРД «РД-214».

УДК 62-762

АНАЛИЗ ДИНАМИКИ ИЗМЕНЕНИЯ РАДИАЛЬНЫХ ЗАЗОРОВ НАСОСОВ И ТУРБИН ТНА ЖРД

©2011 А. В. Иванов Воронежский государственный технический университет

В статье рассмотрены факторы, влияющие на изменение зазоров в уплотнениях высокооборотных турбо-машин, предложены аппроксимирующие зависимости для анализа изменения зазора в процессе работы агрегата. Показано, что для высокооборотных агрегатов нежелательно при проведении расчета и анализа работы тур-бомашин использовать предположение постоянства зазора на всех режимах работы.

Уплотнение, ротор, статор, зазор, турбомашина, деформации.

При создании высокооборотных тур-бомашин одним из ключевых моментов является выбор зазора между роторным и ста-торным элементами уплотнения. Выбор оптимальных величин и анализ изменения зазоров в уплотнениях проточной части играют важную роль при создании уплотнитель-ного узла, так как именно зазоры во многом определяют эффективность и работоспособность конструкции. Особенно актуальной эта задача является для турбонасосных агрегатов жидкостных ракетных двигателей, элементы конструкции которых подвергаются значительным силовым и температурным деформациям (перепады давления на элементах уплотнения до 60 МПа, температуры до 1000 К, окружные скорости роторных элементов уплотнений до 600 м/с). Важность проблемы выбора зазора обусловлена следующим:

Снижение зазора ведет к уменьшению утечек через уплотнения, то есть повышению экономичности турбомашины;

Уменьшение зазора приводит к росту вероятности возникновения фрикционного или ударного контакта между роторным и статорным элементами уплотнения, то есть повреждению уплотнительных поверхностей и, возможно, выходу агрегата из строя.

В турбонасосных агрегатах наиболее широкое распространение получили неподвижные и самоустанавливающиеся уплотнения с гарантированным зазором.

Для бесконтактных уплотнений можно выделить три вида зазоров - монтажные, рабочие и минимальные гарантированные зазоры. Монтажные зазоры - зазоры между роторным и статорным элементами уплотнения при сборке, определенные как полуразность диаметров, исходя из предположения о концентричном взаимном расположении ротора и статора. Рабочие зазоры - за-

зоры между ротором и статором с учетом силовых и температурных деформаций, полученные из условия осесимметричности деформаций, определяющие расход через уплотнение. Минимальные гарантированные зазоры - зазоры, определенные с учетом силовых и температурных деформаций, а также возможного взаимного монтажного и эксплуатационного смещения элементов конструкции, определяющие работоспособность уплотнения .

В общем случае имеется два типа причин, вызывающих изменение зазора между роторными и статорными частями уплотнения:

Монтажные смещения, то есть смещения осей уплотнительных поверхностей относительно геометрической оси, которые имеются в собранном агрегате перед его запуском, на них влияют три группы факторов: конструктивная схема агрегата, особенности технологического процесса и фактические погрешности изготовления деталей, технологический процесс сборки и контроля узлов уплотнений;

Эксплуатационные смещения, вызванные условиями работы агрегата в составе двигателя - температурными и силовыми деформациями, изгибом вала от действия гидравлических и газовых сил, нагрузками от дисбалансов, колебаниями и т.д.

Номинальные значения радиальных зазоров в уплотнениях назначают исходя из опыта проектирования и статистики эксплуатации аналогичных агрегатов или расчетным путем. Как правило, используется комбинация этих двух способов. Обычно для каждого уплотнения выполняется расчет напряженно-деформированного состояния на номинальном режиме работы. Так же выполняются расчеты динамики изменения теплового состояния конструкции в процессе

работы агрегата . Эти расчеты выполняются в специализированных САЕ-системах с применением метода конечных элементов с целью определения номинальных значений деформаций элементов уплотнения, назначения номинальных монтажных и рабочих зазоров. Расчет монтажных и эксплуатационных смещений производится по предельным, наиболее неблагоприятным с точки зрения работоспособности сочетаниям допусков размеров, формы и расположения поверхностей. Выполнение расчета методом конечных элементов для каждого режима работы (запуска, останова, перехода с режима на режим) является сложным, длительным и трудоемким процессом. В связи с этим целесообразно проведение расчета динамики изменения радиального зазора с использованием упрощенных зависимостей. Такие зависимости должны удовлетворять следующим требованиям:

1) универсальность - должны обеспечивать возможность расчета значений радиального минимального гарантированного и рабочего зазоров для любой лопаточной машины: насоса, турбины, компрессора;

2) простота - не должны требовать применения дополнительных расчетов с использованием САЕ-систем;

3) высокая точность - должны учитывать все доступные при проектировании роторного и статорного элементов уплотнения данные о деформациях элементов уплотнения, допусках размеров, формы и расположения поверхностей.

Рассмотрим уплотнения ротора с гарантированным зазором. Радиальный рабочий зазор в уплотнении АКР равен разнице монтажного зазора АКМ и суммы величин силовых и термических деформаций АКД вращающегося и неподвижного уплотни-тельных элементов:

ЛЯ^Л^-Л^. (1)

Местный минимальный зазор

А^^А^-А^-бЯ.-в, (2)

где = 8R¡б + 8Rlaб - местное

уменьшение радиуса уплотнительной поверхности корпуса, вызванное отклонениями ее формы при изготовлении и сборке (8 7?фб) и отклонениями формы из-за воздействия силового и температурного нагруже-

ния при работе (8 R£a6);

s=£c6+sPa6 - смещение оси уплотнительной поверхности ротора относительно оси уплотнительной поверхности статора при сборке (всб) и за счет силового и температурного нагружения при работе (£раб)-

Монтажный зазор в уплотнении равен разнице радиусов уплотнительных поверхностей статорного Ry.c и роторного i?y p, измеренных при сборке:

Величина монтажного зазора выбирается из условия выполнения условия ARmin >0 на всех режимах работы. Суммарное значение силовых и термических деформаций определяется как

ARM=5RCM + 5Rvn-5RVM+

где 5 Мс [ - деформация уплотнительного элемента корпуса от перепада давления на уплотнении;

8 Rpц - деформация уплотнительного элемента ротора от центробежных сил;

8 Rpд - деформация уплотнительного

элемента ротора от перепада давления на уплотнении;

8 Rpt - термическая деформация уплотнительного элемента ротора;

8 Rct - термическая деформация уплотнительного элемента корпуса.

Термические деформации 8 Rpt, 8 Rct

имеют положительное значение, если температура конструкции выше температуры деталей при сборке, и отрицательное - при температуре конструкции ниже температуры деталей при сборке.

Величина смещения осей уплотнительных поверхностей

S - S + £ + £ + £ + £ + £ + £ ,

р Р с с.и пр д к.т п "

s - монтажное смещение оси по-

верхности уплотнительного элемента ротора относительно оси его вращения, вызванное зазорами по посадочным поверхностям деталей, отклонениями взаимного расположения поверхностей деталей при изготовлении, зазорами в подшипниках;

£рс - монтажное смещение осей уплотнительных элементов статора при сборке

агрегата, вызванное зазорами по посадкам деталей и отклонениями взаимного расположения поверхностей деталей при их изготовлении;

вси - монтажное смещение осей уп-лотнительных элементов, вызванное деформациями корпусов агрегата в процессе сборки агрегата и двигателя;

Радиус прецессии ротора в процессе работы;

£д - смещение осей уплотнительных

элементов при работе вследствие силовых и термических деформаций корпусов агрегата; вкт - смещение осей уплотнительных

элементов при работе, вызванное деформациями корпусов агрегата под воздействием присоединенных трубопроводов и крепежных элементов двигателя;

£п - смещение осей уплотнительных

элементов, вызванное прогибом ротора под воздействием гидродинамических сил в полостях агрегата.

Из уравнений (1), (2) следует:

Приведенные зависимости справедливы для любых типов бесконтактных уплотнений.

Как следует из зависимостей (2), (3), (4), выбор минимальной, но достаточной для безопасной работы величины монтажного зазора является сложной задачей, так как при этом требуется учесть целый ряд составляющих деформаций и смещений осей уплотнительных элементов. Эта задача осложняется еще и тем, что величины и векторные направления деформаций и смещений осей носят вероятностный характер.

В соответствии с зависимостью (5) минимальное значение рабочего зазора АКр в уплотнении обеспечивается при минимальных значениях <5 и е. Таким образом, одним из направлений обеспечения минимального значения рабочего зазора является повышение точности изготовления деталей агрегата, повышение качества сборки агрегата и двигателя, увеличение жесткости ротора и корпусов агрегата. Более радикальным направлением является использование уплотнений с плавающими кольцами. Схема расчета зазоров в уплотнении с фиксированной гладкой стенкой приведена на рис. 1.

Рис. 1. Схема расчета зазоров в уплотнении с фиксированной гладкой стенкой

В уплотнении с плавающим кольцом смещение оси ротора относительно оси корпуса компенсируется радиальным смещением плавающего кольца. Кроме того, из-за отсутствия жесткой связи между кольцом и корпусом исключается возможность изменения формы уплотнительных элементов при сборке и работе. Плавающее кольцо в процессе работы за счет действия гидродинамических сил в уплотнительной щели, которые на всех режимах работы превышают силу трения по торцу кольца, самоустанавливается относительно уплотнительной поверхности ротора. При этом рабочий зазор в уплотнении равен местному минимальному зазору - А Щ = А11тЫ. Схема расчета зазоров в самоустанавливающемся уплотнении с плавающим кольцом приведена на рис. 2, а.

Уплотнения ТНА работают при высоких перепадах давления, в результате чего на плавающее кольцо действует повышенная сила прижатия к торцу корпуса, не позволяющая ему самоустанавливаться при прецессии оси уплотнительной поверхности ротора. Такие уплотнения относятся к типу полуподвижных уплотнений. В полуподвижных уплотнениях кольцо самоустанавливается относительно уплотнительной поверхности ротора, компенсируя смещения оси и прогибы ротора, но при этом не компенсируются монтажные биения уплотнительной поверхности ротора и ее биения, связанные с прецессией ротора при работе. Следует отметить, что при монтаже полуподвижное кольцо может быть смещено относительно ротора в пределах монтажного зазора и, как следствие, возможен контакт кольца и ротора. При запуске (останове), когда гидродинамические силы меньше сил трения по торцу кольца, полуподвижное кольцо выставляется относительно ротора за счет соударений

между ними . При работе на режиме полуподвижное кольцо выставляется относительно ротора за счет гидродинамических сил в уплотнительной щели, так как они превышают силу трения по торцу кольца. В течение работы агрегата полуподвижное кольцо не отслеживает биений ротора, однако отслеживает положение ротора при переходе с режима на режим. В полуподвижном уплотнении рабочий зазор определяется соотношением

ЛЯ =ЛЯ +8 . (6)

р.п тгп р пр V J

Рабочий зазор в полуподвижном уплотнении (рис. 2, б) меньше, чем в щелевом, на величину

5 Нр Н + £Р с + £с и + £д + т + £п. (7)

Я > 3 ш ^ £

Рис. 2. Схема расчета зазоров в самоустанавливающихся уплотнениях: а - с плавающим кольцом; б - с полуподвижным кольцом

Это главное достоинство уплотнения с полуподвижным кольцом по сравнению со щелевым уплотнением, обеспечивающее пониженные утечки рабочей среды. В щелевых уплотнениях в связи с тем, что величины смещения оси и прогиб ротора трудно прогнозируемы, при небольших монтажных зазорах существует вероятность заклинивания ротора до его работы или выработка уп-лотнительных поверхностей при работе. Уплотнение с полуподвижным кольцом обладает более высокой надежностью, так как лишено указанного недостатка.

Следует отметить, что силовые и термические деформации уплотнительных элементов и прогиб ротора могут быть определены расчетным путем с определенной погрешностью. Кроме того, силовые деформации и прогиб ротора изменяются в зависимости от режима работы, а термические деформации - во времени по мере достижения стационарных значений температуры конструкции. Поэтому необходимо стремиться к достижению минимальных значений деформаций и прогиба ротора. При ЛЯД = 0 рабочий зазор в щелевом уплотнении АЯ^ =ЛКм, а в уплотнении с плавающим кольцом

Разница термических деформаций уплотнительных элементов корпуса и ротора может равняться нулю при одинаковых величинах температуры и одинаковых конструкционных материалах элементов уплотнения, а также при условии, если рабочая температура конструкции мало отличается от температуры, при которой ведется сборка.

Силовые деформации в уплотнениях ТНА двигателей без дожигания были малы. Основной вклад вносили температурные деформации, так как для крыльчаток насосов часто использовались алюминиевые сплавы. В двигателях с дожиганием существенно возросли силовые деформации элементов уплотнений, особенно в кислородно-водородных ЖРД, в которых повышенные деформации обусловлены более высокой напряженностью конструкции. В настоящее время при создании многоразовых ЖРД многократного использования важно сохранение стабильности деформаций и зазоров от пуска к пуску ТНА.

Аппроксимирующие зависимости для определения составляющих деформаций роторного и статорного элементов уплотнения в предположении зависимости перепадов давления на элементах уплотнения от частоты вращения ротора можно представить следующим образом:

5йс.д(т) = <5ДСН°М (п(т)/пном)2 - силовые деформации статорного элемента уплотнения в произвольный момент времени т;

Силовые деформации статорного элемента уплотнения на номинальном режиме работы;

и(т) - частота вращения ротора в про-

извольныи момент времени т; ином - номинальная частота вращения ротора;

5Др.д(т) = °м (п(т)/пном)2 - силовые деформации роторного элемента уплотнения от действия перепада давления в произвольный момент времени т;

<5/?р °м - силовые деформации роторного элемента уплотнения от действия перепада давления на номинальном режиме работы;

гЯр.ц(т) = 5йр°м (п(т)/пном)2 - силовые деформации роторного элемента уплотнения от действия центробежных сил в произвольный момент времени т;

5йр °м - силовые деформации роторного элемента уплотнения от действия центробежных сил на номинальном режиме работы;

пературные деформации статорного элемента уплотнения в произвольный момент времени т;

(т) = ^ (т) - ^ сб - изменение температуры статорного элемента уплотнения;

tc(т) - температура статорного элемента уплотнения в произвольный момент времени т; tccб - температура статорного элемента при сборке уплотнения;

ас (т)) - температурный коэффициент линейного расширения материала статорного элемента уплотнения в зависимости от его температуры в произвольный момент времени т, полученный из аппроксимирующей зависимости ;

«Мт) = *р(тК("Р(Т))ЛР "тем"

пературные деформации роторного элемента уплотнения в произвольный момент времени т;

¿Ц,(т) = *р(т)-*рсб - изменение температуры роторного элемента уплотнения;

/р (т) - температура роторного элемента уплотнения в произвольный момент вре-температура роторного элемен-

та при сборке уплотнения;

ар (т)) - температурный коэффициент линейного расширения материала роторного элемента уплотнения в зависимости от его температуры в произвольный момент

времени т, полученный из аппроксимирующей зависимости.

Обобщенная зависимость для определения рабочего зазора:

чаНОМ/ чаНОМ/

р.ц (Щ2 - (гяс.с(т) - <5Др.,(т)) .

Для минимального гарантированного зазора:

МпЫ = ДДМ - (<5Д£б + "

\ 4 /"-ном/ / ^"^ном"

^* "■ном" ^

В приведенных зависимостях составляющие деформаций, отклонений формы и расположения роторного и статорного элементов уплотнения имеют положительное значение, если ведут к уменьшению монтажного зазора, отрицательные, если ведут к увеличению радиального зазора.

В качестве примера приведем результаты расчета динамики изменения рабочего и местного гарантированного зазоров в процессе проведения испытаний высокооборотной турбомашины (рис. 3). Все параметры на графике, кроме времени, являются нормированными, то есть отнесенными к номинальному значению соответствующего параметра.

Рис. 3. Изменение параметров в процессе проведения испытания:

1 -.минимальный гарантированный зазор; 2 ^рабочий зазор; 3 - температура элементов уплотнения; 4 - частота вращения ротора

При выполнении расчета динамики изменения радиальных зазоров приняты следующие допущения: температура роторного и статорного элементов уплотнения одинакова; смещение осей уплотнительных поверхностей и местное уменьшения радиуса

уплотнительной поверхности корпуса постоянны, независимо от режима работы агрегата, силовые и температурные деформации элементов уплотнения имеют осесим-метричный характер.

Видно, что минимальный гарантированный зазор на некоторых режимах работы составляет до 15 % от монтажного зазора, рабочий зазор - до 30 % от монтажного.

В процессе работы агрегата радиальный рабочий зазор в уплотнении может изменяться в 2-4 раза по сравнению с монтажным, а минимальный гарантирован-ный зазор - в 2-10 раз. Таким образом, часто используемые способы применения при анализе испытаний, работы ТНА расчетов в предположении постоянства радиального зазора не всегда приемлемы.

Библиографический список

1. Дмитренко, А.И. Анализ уплотнений

проточной части насосов и турбин ТНА ЖРД [Текст] / А.И. Дмитренко, A.B. Иванов // Научно-технический юбилейный сборник. КБ химавтоматики. - Воронеж: ИПФ «Воронеж». - 2001. - С. 364-370.

Одной из самых сложных машиностроительных конструкций является газовая турбина.

Развитие газовых турбин определяется, в первую очередь, развитием авиационных газотурбинных двигателей для военных целей. При этом главным является повышение удельной тяги и снижение удельного веса. Проблемы экономики и ресурса для таких двигателей являются вторичными.

Одной из самых нагруженных деталью, ограничивающей межремонтный ресурс, являются неохлаждаемые лопатки турбины, изготавливаемые из деформируемого никелевого сплава ЭИ893. Лопатки из этого сплава из-за ограничений по длительной прочности имеют ресурс 48000 часов. В настоящее время при производстве лопаток турбин существует достаточно высокая конкуренция, поэтому вопросы снижения стоимости и повышения ресурса лопаток являются очень актуальными.

В данном дипломном проекте рассмотрена сравнительно новая для отечественной промышленности технология производства неохлаждаемых лопаток турбин большой длины (более 200 мм). В качестве заготовки лопатки применяется отливка из материала ЦНК-7П без припуска на механическую обработку пера, подвергнутая горячему изостатическому прессованию. Для снижения трудоемкости изготовления лопаток используется глубинное шлифование замка, а для повышения сопротивления усталости замок лопатки после шлифования подвергается гидродробеструйному упрочнению.

В данном дипломном проекте рассмотрена технология производства рабочей лопатки турбины. Поскольку данный техпроцесс универсален для лопаток самых разных размеров, он может применятся как для изготовления лопаток турбинынизкого давления ГТД (либо ГТУ), так и турбины ТНА ЖРД. В этой работе рассмотрена лопатка для ТНА ЖРД РД-180. Однако в силу универсальности материала лопаток и техпроцесса мы уделяем повышенное внимание также и ресурсу изделия. Подробно рассмотрен процесс глубинного шлифования для деталей из жаропрочных сплавов, какой является турбинная лопатка, и описаны технология производства и свойства используемых в глубинном шлифовании алмазных роликов для правки шлифовальных кругов. В проекте рассчитано на точность и силу зажима приспособление "щучья пасть", широко применяемое при операциях глубинного шлифования в процессе производства лопатки. В исследовательской части рассмотрен процесс повышения усталостной прочности путем обдувки дробью в жидкой среде замка лопатки (гидродробеструйное упрочнение), описаны методики определения остаточных напряжений и проведения усталостных испытаний лопатки. Также в работе описана система автоматизации проектирования CATIA и создание в данной системе модели детали и конструкторской документации. В части по охране труда разработаны меры для повышения безопасности производства и охраны окружающей среды. Рассчитана также эффективность внедрения данного техпроцесса производства лопатки по отношению к предыдущему.

Краткое описание ТНА РД-180

*Описание дано без газогенератора.

Турбонасосный агрегат выполнен по одновальной схеме и состоит из осевой одноступенчатой реактивной турбины, одноступенчатого шнекоцентробежного насоса окислителя и двухступенчатого шнекоцентробежного насоса горючего (вторая ступень используется для подачи части горючего в газогенераторы).

На основном валу с турбиной находится насос окислителя, соосно с которым на другом валу расположены две ступени насоса горючего. Валы насосов окислителя и горючего соединены зубчатой рессорой для разгрузки вала от температурных деформаций, возникающих вследствии большой разницы температур рабрчих тел насосов, а также для предотвращения замерзания горючго.

Для защиты радиально-упорных подшипников валов от чрезмерных нагрузок применены эффективные авторазгрузочные устройства.

Турбина - осевая одноступенчатая реактивная. Для предотвращения возгорания из-за поломок элементов конструкции или трения вращающихся деталей о неподвижные (вследствие выборки зазоров от деформаций или наклепа на сопрягаемых поверхностях от вибрации) зазор между лопатками соплового аппарата и ротора сделан относительно большим, а кромок лопаток - относительно толстыми.

Чтобы исключить возгорание и разрушение деталей газового тракта турбины, в конструкции применены никелевые сплавы, включая жаропрочные для горячих газовых магистралей. Статор и выхлопной тракт турбиныпринудительно охлаждаются холодным кислородом. В местах малых радиальных или торцевых зазоров используются разного рода теплозащитные покрытия (никелевые для лопаток ротора и статора, металлокерамического для ротора), а также серебряные или бронзовые элементы, исключающие возгорание даже при возможном касании вращающихся и неподвижных деталей турбонасосного агрегата.

Для уменьшения размеров и массы посторонних частиц, могущих привести к возгоранию в газовом тракте турбины, на входе в двигатель установлен фильтр с ячейкой 0.16*0.16 мм.

Насос окислителя. Высокое давление жидкого кислорода и, как следствие, повышенная опасность возгорания обусловили конструктивные особенности насоса окислителя.

Так, вместо плавающих уплотнительных колец на буртах крыльчатки (обычно используемых на менее мощных ТНА) применены неподвижные щелевые уплотнения с серебряной накладкой, поскольку процесс "всплывания" колец сопровождается трением в местах контакта крыльчатки с корпусом и может привести к возгоранию насоса.

Шнек, крыльчатка и торовый отвод нуждаются в особенно тщательном профилировании, а ротор в целом - в особых мерах по обеспечению динамической сбалансированности в процессе работы. В противном случае вследствие больших пульсаций и вибраций происходят разрушения трубопроводов, возгорания в стыках вследствие взаимного перемещения деталей, трения и наклепа.

Для предотвращения возгорания из-за поломок элементов конструкции (шнека, крыльчатки и лопаток направляющего аппарата) в условиях динамического нагружения с последующим возгоранием из-за затирания обломков использованы такие средства, как повышение конструктивного совершенства и прочности за счет геометрии, материалов и чистоты отработки, а также введение новых технологий: изостатическое прессирования литых заготовок, применение гранульной технологии и другие виды.

Бустерный насос окислителя состоит из высоконапорного шнека и двухступенчатой газовой турбины, привод которой осуществляется окислительным газом, отбираемом после основной турбиныс последующим перепуском его на вход в основной насос.

Бустерный насос горючего состоит из высоконапорного шнека и одноступенчатой гидравлической турбины, работающей на керосине, отбираемом после основного насоса. Конструктивно бустерный насос горючего аналогичен бустерному насосу окислителя со следующими отличиями:

· одноступенчатая гидротурбина работает на горючем, отбираемым с выхода насоса горючего основного ТНА;

· отвод горючего высокого давления для разгрузки шнека от действий осевых производится из входного коллектора гидротурбины БНАГ.

Таблица 1: ТТХ ТНА

Параметр

Значение

Окислитель

Давление на выходе из насоса

Расход компонента через насос

КПД насоса

Мощность на валу

Скорость вращения вала

Мощность турбины

Давление на входе в турбину

Количество ступеней

Степень понижения давления на турбине

Температура на входе в турбину

КПД турбины

Изобретение относится к ракетной технике, конкретно к жидкостным ракетным двигателям, работающим на криогенном окислителе и на углеводородном горючем. Турбонасосный агрегат (ТНА) жидкостного ракетного двигателя содержит установленные на валу детали ротора турбонасосного агрегата крыльчатку насоса окислителя, крыльчатку насоса горючего и рабочее колесо турбины, размещенные в корпусе турбонасосного агрегата крыльчатку дополнительного насоса горючего с валом и крыльчаткой дополнительного насоса горючего, согласно изобретению между рабочим колесом турбины и крыльчаткой насоса окислителя установлены магнитная муфта и мультипликатор. Между насосом окислителя и насосом горючего могут быть установлены магнитная муфта и мультипликатор. Между насосом горючего и дополнительным насосом горючего могут быть установлены магнитная муфта и мультипликатор. Изобретение обеспечивает повышение надежности ТНА. 2 з.п. ф-лы, 3 ил.

Изобретение относится к ракетной технике, конкретно к жидкостным ракетным двигателям ЖРД, работающим на криогенном окислителе и на углеводородном горючем.

Известен жидкостный ракетный двигатель по патенту РФ на изобретение №2095607, предназначенный для использования в составе космических разгонных блоков, ступеней ракетоносителей и как маршевый двигатель космических аппаратов, включает в себя камеру сгорания с регенеративным трактом охлаждения турбонасосный агрегат - ТНА. ТНА содержит насосы подачи компонентов - горючего и окислителя с турбиной на одном валу, в который введен конденсатор. Выход конденсатора по линии хладагента соединен с входом в камеру сгорания и с входом в тракт регенеративного охлаждения камеры сгорания. Выход из конденсатора по линии теплоносителя соединен с входом в насос одного из компонентов. Выход из насоса того же компонента сообщен с входом конденсатора по линии хладагента. Второй вход конденсатора сообщен с выходом турбины. Выход насоса другого компонента сообщен с входом в камеру сгорания.

Недостатком ТНА двигателя является ухудшение кавитационных свойств насоса при перепуске конденсата. Такое свойство насоса неминуемо приводит в уменьшению расхода одного из компонентов топлива через ТНА, падению тяги ракеты в несколько раз и срыву программы полета ракеты или к катастрофе.

Известны способ работы ЖРД и жидкостный ракетный двигатель по патенту РФ на изобретение №2187684. Способ работы жидкостного ракетного двигателя заключается в подаче компонентов топлива в камеру сгорания двигателя, газификации одного из компонентов в тракте охлаждения камеры сгорания, подводе его на турбину турбонасосного агрегата с последующим сбросом в форсуночную головку камеры сгорания. Часть расхода одного из компонентов топлива направляют в камеру сгорания, а оставшуюся часть газифицируют и направляют на турбины турбонасосных агрегатов. Отработанный на турбинах газообразный компонент смешивают с жидким компонентом, поступающим в двигатель при давлении, превышающем давление насыщенных паров получаемой смеси. Жидкостной ракетный двигатель содержит камеру сгорания с трактом регенеративного охлаждения, насосы подачи компонентов топлива и турбину. Насосы и турбины скомпонованы в два ТНА: основной и бустерный. Двигатель содержит установленные последовательно перед насосом подачи одного из компонентов топлива основного турбонасосного агрегата, насос бустерного турбонасосного агрегата и смеситель. Выход насоса основного турбонасосного агрегата соединен как с форсуночной головкой камеры сгорания, так и с трактом регенеративного охлаждения камеры сгорания. Тракт регенеративного охлаждения, в свою очередь, связан с турбинами основного и бустерного турбонасосных агрегатов, выходы которых соединены со смесителем.

Недостатком этой схемы является то, что тепловой энергии, снимаемой при охлаждении камеры сгорания, может оказаться недостаточно для привода турбонасосного агрегата двигателя очень большой мощности.

Известен ЖРД по патенту РФ на изобретение №2190114, МПК 7 F02K 9/48, опубл. 27.09.2002 г. Этот ЖРД включает в себя камеру сгорания с трактом регенеративного охлаждения, турбонасосный агрегат ТНА с насосами окислителя и горючего, выходные магистрали которых соединены с головкой камеры сгорания, основную турбину и контур привода основной турбины. В контур привода основной турбины входят последовательно соединенные между собой насос горючего и тракт регенеративного охлаждения камеры сгорания, соединенный с входом в основную турбину. Выход из турбины ТНА соединен с входом второй ступени насоса горючего.

Этот двигатель имеет существенный недостаток. Перепуск подогретого в тракте регенеративного охлаждения камеры сгорания горючего на вход во вторую ступень насоса горючего приведет к его кавитации и к последствиям, указанным выше. Большинство ЖРД используют такие компоненты топлива, что расход окислителя почти всегда больше расхода горючего. Следовательно, для мощных ЖРД, имеющих большую тягу и большое давление в камере сгорания эта схема неприемлема, т.к. расхода горючего будет недостаточно для охлаждения камеры сгорания и привода основной турбины.

Кроме того, не проработана система запуска ЖРД, система воспламенения компонентов топлива и система выключения ЖРД и его очистки от остатков горючего в тракте регенеративного охлаждения камеры сгорания.

Известен жидкостный ракетный двигатель и способ его запуска по патенту РФ на изобретение №2232915, опубл. 10.09.2003 г. (прототип), который содержит камеру сгорания, турбонасосный агрегат, газогенератор, систему запуска, средства для зажигания компонентов топлива и топливные магистрали. Выход насоса окислителя соединен с входом в газогенератор. Выход первой ступени насоса горючего соединен с каналами регенеративного охлаждения камеры и со смесительной головкой. Выход второй ступени насоса горючего (дополнительного насоса горючего) соединен с регулятором расхода с электроприводом. Другой вход регулятора соединен с пусковым бачком со штатным горючим. Выход из регулятора соединен с газогенератором. Выход из газогенератора соединен с входом, в турбину турбонасосного агрегата, выход из которой соединен со смесительной головкой. Регулятор расхода снабжен гидроприводом предварительной ступени, который через кавитирующий жиклер и гидрореле соединен с пусковым бачком со штатным горючим. Гидрореле соединено со второй ступенью насоса горючего. Дроссель, установленный на выходе первой ступени насоса горючего, выполнен совместно с управляемым клапаном предварительной ступени.

Недостатком такой схемы является пожар или взрыв ТНА и ракеты на старте или в полете вследствие низкой надежности уплотнения между турбиной и насосом окислителя, между насосом окислителя и горючего, а также между насосом горючего и дополнительным насосом горючего из-за действия на них большого перепада давления: 300...400 кгс/см 2 для современных ЖРД. Например, при использовании в качестве компонентов ракетного топлива водорода и кислорода самые незначительные утечки этих компонентов приводят к образованию «гремучей смеси» и практически всегда - к взрыву ракеты.

Задачи создания изобретения: предотвращение взрыва ТНА или ракеты на старте или в полете.

Решение указанной задачи достигнуто за счет того, что турбонасосный агрегат жидкостного ракетного двигателя, содержащий установленные на валу детали ротора турбонасосного агрегата: крыльчатку насоса окислителя, крыльчатку насоса горючего и рабочее колесо турбины, размещенные в корпусе турбонасосного агрегата крыльчатку дополнительного насоса горючего с валом и крыльчаткой дополнительного насоса горючего, отличается тем, что между рабочим колесом турбины и крыльчаткой насоса окислителя установлена магнитная муфта. Между насосом окислителя и насосом горючего также может быть установлена магнитная муфта. Между насосом горючего и дополнительным насосом горючего также может быть установлена магнитная муфта.

Проведенные патентные исследования показали, что предложенное техническое решение обладает новизной, изобретательским уровнем и промышленной применимостью. Новизна подтверждается проведенными патентными исследованиями, изобретательский уровень - достижение нового эффекта - абсолютной герметичности соединений между турбиной и насосами, а также между насосами и предотвращение взрыва ТНА и ракеты на старте или в полете.

Промышленная применимость обусловлена тем, что все элементы, входящие в компоновку ТНА, известны из уровня техники и широко применяются в двигателестроении.

Сущность изобретения поясняется на фиг.1...3, где:

На фиг.1 приведена схема первого варианта ТНА,

На фиг.2 приведена схема второго варианта ТНА,

На фиг.3 приведена схема третьего варианта ТНА.

Турбонасосный агрегат жидкостного ракетного двигателя ТНА 1 (фиг.1) содержит вал насоса горючего 2, вал насоса окислителя 3. На валу насоса окислителя 3 установлена крыльчатка насоса окислителя 4, на валу насоса горючего 2 установлена крыльчатка насоса горючего 5. Рабочее колесо турбины 6 установлено в верхней части ТНА. Все детали ротора ТНА размещены внутри корпуса ТНА 7. Дополнительный насос горючего 8, имеющий крыльчатку дополнительного насоса горючего 9 и вал дополнительного насоса горючего 10 выполнен соосно с ТНА 1 и установлен на стороне, противоположной рабочему колесу турбины 6. Крыльчатка дополнительного насоса горючего 9 установлена в корпусе дополнительного насоса горючего 11, полость которого «Б» герметизирована относительно полости ТНА «А». Между крыльчаткой насоса горючего 5 и дополнительным насосом горючего 8 в корпусе ТНА 7 установлена магнитная муфта 12 и мультипликатор 13. Магнитная муфта 12 и все другие магнитные муфты (если они применяются в конструкции) состоят из ведущего диска магнитной муфты ведомого диска магнитной муфты, а между дисками магнитной муфты выполнена перегородка из немагнитного материала, например из немагнитной стали (на фиг.1...3 не показано). Рабочее колесо турбины установлено на валу турбины 14.

Газогенератор 15 установлен соосно с ТНА 1 над сопловым аппаратом турбины 16. Газогенератор 15 содержит головку газогенератора 17, внутри которой выполнены наружная плита 18 и внутренняя плита 19 с полостью «В» над ними и полостью «Г» между ними. Внутри головки газогенератора 17 установлены форсунки окислителя 20 и форсунки горючего 21. Форсунки окислителя 20 сообщают полость «В» с внутренней полостью газогенератора «Д», а форсунки горючего 21 сообщают полость «Г» с внутренней полостью газогенератора «Д». На наружной поверхности газогенератора 15 установлен коллектор горючего 22, к которому подходит топливопровод высокого давления 23 от дополнительного насоса горючего 8. В линии трубопровода высокого давления 23 установлен клапан высокого давления 24 и регулятор расхода 25 с приводом регулятора расхода 26. Выход из крыльчатки насоса горючего 5 соединен трубопроводом 27 с входом в дополнительный насос горючего 8 и с камерой сгорания (камера сгорания на фиг.1 не показана).

Выход из крыльчатки насоса окислителя 4 трубопроводом окислителя 28 через клапан окислителя 29 соединен с полостью «В» газогенератора 15. На газогенераторе 15 установлены одно или несколько запальных устройств 30. Блок управления 31 соединен электрическими связями с запальными устройствами 30, клапаном высокого давления 24, клапаном окислителя 29 и приводом регулятора расхода 26.

При запуске ЖРД с блока управления 31 подаются электрические сигналы на клапаны 24 и 29 и запальное (запальные) устройства 30. Окислитель и горючее из крыльчаток насосов 4, 5 и 8 самотеком поступает в газогенератор 15, где воспламеняется, продукты сгорания раскручивают рабочее колесо турбины 6, установленное на валу 14.

В первом варианте (фиг.1) через магнитную муфту 12 и мультипликатор 13 раскручивается вал насоса окислителя 3. Давление на выходе из крыльчаток насосов 4 и 5 возрастает. Часть топлива (около 10%) поступает в дополнительный насос горючего 8, где его давление значительно увеличивается. Дополнительный насос горючего 8 приводится во вращение и имеет одинаковую частоту вращения, что и крыльчатка насоса окислителя 4 и крыльчатка насоса горючего 5 (фиг.1).

По второму варианту (фиг.2) крутящий момент с вала насоса окислителя 3 передается на вал насоса горючего 2 через магнитную муфту 12 и мультипликатор 13. При этом крыльчатка насоса горючего 5 будет иметь более высокие обороты, чем крыльчатка насоса окислителя 4. Вал дополнительного насоса горючего 10 соединен с валом насоса горючего 2 напрямую.

По третьему варианту (фиг.3), кроме двух магнитных муфт с мультипликаторами, в конструкции ТНА применена третья магнитная муфта с мультипликатором. Вследствие этого, из-за отсутствия уплотнения по валу дополнительного насоса горючего 10 его надежность возрастает. При давлении на входе в крыльчатку насоса горючего 4 порядка P 1 =4...5 кгс/см 2 , на выходе из крыльчатки насосов горючего 4 Р 2 =300 кгс/см 2 и при давлении на выходе из дополнительного насоса горючего 8 примерно Р 3 =900 кгс/см 2 возникший между ними перепад давления примерно в 600 кгс/см 2 воспринимается перегородкой из немагнитного материала 14. Давление на входе в насос окислителя Р 4 =4...5 кгс/см 2 , на выходе из насоса окислителя P 5 =400 кгс/см 2 , на входе с камеру сгорания Р 6 =300 кгс/см 2 . Наличие магнитных муфт между насосами и насосом окислителя и турбиной обеспечивает полную герметичность всех модулей друг относительно друга, наличие мультипликаторов - согласование оборотов вращения турбины и насосов и одновременно модульность конструкции.

В результате появилась реальная возможность спроектировать все основные узлы ТНА: турбину и насос на оптимальные параметры, в том числе по частотам вращения, и согласовать частоты вращения за счет применения одного мультипликатора между турбиной и насосами или нескольких мультипликаторов, а это позволило минимизировать вес ТНА, что имеет решающее значение в ракетной технике.

Применение изобретения позволило:

1. Предотвратить взрыв ТНА и ракеты при старте или в полете вследствие контакта окислителя и горючего в полости между насосами или проникновения продуктов сгорания из турбины в один из компонентов топлива, если в качестве компонентов ракетного топлива используется кислород и водород или другие агрессивные компоненты.

2. Обеспечить модульность конструкции ТНА.

Выбор редакции
Всем огромный привет! Спешу опять порадовать вас самым популярным августовским блюдом. Угадайте с трех раз! О чем я хочу написать? Каких...

Екатерина II – великая российская императрица, царствование которой стало самым значимым периодом в русской истории. Эпоха Екатерины...

Как выяснила «Газета.Ru», эксперты, расследующие катастрофу Robinson R-66 на Телецком озере в Республике Алтай, склоняются к версии, что...

Во время германской компании на Востоке, Messershmitt BF 109 был основным самолетом истребительной авиации Люфтваффе. Несмотря на их...
Гороскоп совместимости: цветы по знакам зодиака лев - самое полное описание, только доказанные теории, основанные на астрологических...
Символ рока и судьбы, предотвратить которую невозможно. Руна Наутиз означает вынужденные обстоятельства, ограничения, несвободу выбора....
Как приготовить лаваш в кляре Сегодня мы предлагаем вам приготовить блюдо, способное стать и замечательной закуской на праздничном столе,...
Чудеса Пресвятой Богородицы в наши дни не перестают удивлять и радовать христиан, а ее помощь приходит всем христианам, которые молятся...
Варенье из крыжовника в мультиварке готовить довольно легко, оно отличается от обычного лакомства, сваренного на плите, лишь своей...