Основы электромеханики простым языком. Основы электротехники для начинающих. Параллельное и последовательное соединения


Профессия электрик была и будет востребованной, т.к. с каждым годом потребление электроэнергии только возрастает, а электрические сети все масштабнее распространяются по планете. В этой статье мы хотим рассказать читателям, как стать электриком с нуля, с чего начать и где учиться, чтобы быть профессионалом в своем деле.

Прежде всего нужно отметить, что электрик может быть электромонтером, электронщиком, автоэлектриком, инженером-электриком, проектировщиком, электромехаником, электротехником и даже энергетиком, если брать в целом. Как вы понимаете, в каждой из профессий свои особенности. Чтобы стать электриком, для начала Вы должны выбрать для себя подходящую специальность, с которой вы решите в дальнейшем связать свою жизнь ну или отдельный промежуток времени.

Наш совет – если Вам действительно интересно все, что связано с электричеством, лучше планировать наперед, выбирая перспективные направления, которые являются залогом научно-технического прогресса. Весьма интересной работой на сегодняшний день является профессия проектировщик электроснабжения или же автоэлектрик диагност.

С чего начать обучение?

На сегодняшний день стать электриком с нуля можно обучившись в ВУЗе, техникуме, колледже, ПТУ или даже на специальных экстренных курсах. Нельзя сказать, что высшее учебное заведение – это фундамент, благодаря которому можно стать профессиональным электромонтажником. Довольно много специалистов вообще самоучки, которые окончили техникум, чтобы просто получить корочки и устроиться на предприятие.

Рассмотрим несколько наиболее популярных способов получить профессию электрик:

  1. ВУЗ. Длительность обучения от 4 до 5,5 лет. Выпускники могут быть инженерами, т.к. проходят наиболее развернутый теоретический и практический курс. Обучение может быть бесплатным.
  2. Техникум. При поступлении после 9 класса курс обучения составляет от 3 до 4 лет. После 11 класса останется обучиться от 1,5 до 3 лет. Квалификация, которую получают выпускники – техник. Есть возможность бесплатно выучиться.
  3. Колледж, ПТУ – обучение от 1 до 3 лет. После окончания учебы можно стать слесарем-электриком по ремонту электрооборудования. Как и в двух предыдущих случаях, получить образования можно бесплатно.
  4. Экстренные курсы – от 3 недель до 2 месяцев. Самый быстрый способ стать электриком с нуля. На сегодняшний день обучиться профессии можно даже в онлайн-режиме благодаря скайп-конференциям и индивидуальному обучению. Стоимость курсов колеблется от 10 до 17 тыс. рублей (цены на 2017 год).
  5. Самообучение. Подойдет лишь в том случае, если вы хотите стать электромонтажником в домашних условиях. Существует множество книг, платных курсов и даже сайтов, как наш , где Вы можете узнать практически все для того, чтобы самостоятельно выполнять несложные работы по электромонтажу. На этом способе, позволяющем стать грамотным электромонтажником с нуля, мы остановимся подробнее.

Первые шаги к обучению

Несколько слов про самоучек

Если вас интересует профессия электрик только для того, чтобы самостоятельно выполнять несложные электромонтажные работы, то достаточно будет по книгам и видеокурсам изучить весь материал, после чего с малого выполнять простейшие подключения и ремонты. Мы не раз встречали довольно грамотных электриков, которые выполняли сложные работы без образования, и с уверенностью можно сказать, что делали они это очень профессионально. В то же время попадались и горе-электрики с высшим образованием, которых язык не поворачивается назвать инженерами.

Все это ведется к тому, что стать электриком в домашних условиях можно, но все же не помешает закрепить полученные знания, пройдя курсы. Еще один способ обучиться всем необходимым навыкам – попроситься помощником электрика на стройку. Вы также можете дать объявление на различных форумах, что согласны бесплатно или за небольшой процент от прибыли помогать электромонтажникам на «шабашках». Очень многие специалисты не откажутся от помощи, типо «поднять на этаж», проштробить или еще чем-нибудь помочь за пару сотен рублей. Вы в свою очередь сможете набраться опыта, наблюдая за работой мастера. Через несколько месяцев такой взаимовыгодной работы можно и самому начинать подключать розетки, автоматы либо даже ремонтировать светильники. А дальше уже только опыт и новые объекты помогут вам стать хорошим электриком без образования.

Ну и последнее, что рекомендуем – обучиться азам по нашим советам. Для начала можете изучить рубрику , после этого перейти на и так по всем разделам. В дополнении к этому не помешает изучить книги, о которых мы также расскажем и подыскать подходящий видеокурс. В итоге, если будет стремление и вы внимательно отнесетесь ко всем поставленным задачам, стать электриком в домашних условиях непременно получится.

Чтобы вы понимали перспективы такой профессии, на сегодняшний день очень много юристов, экономистов и других специальностей, где больше нужен умственный труд. А вот рабочей силы катастрофически не хватает предприятиям. В результате при большом желании можно выучиться и найти высокооплачиваемую работу, если вы действительно покажете себя как специалист. Средняя зарплата электрика на 2017 год составляет 35000 рублей. Учитывая дополнительные подработки по вызову и повышение разряда, несложно будет зарабатывать намного больше – от 50000 рублей. Эти цифры уже больше проясняют картину, перспективно ли становиться электриком.

В дополнение ко всему сказанному хотелось бы порекомендовать несколько источников информации:

  1. – минимальный набор обязательно должен у вас присутствовать с самого начала обучения.
  2. – раздел в котором мы рассматриваем все нюансы и опасные ситуации, о которых вы, как новичок должны знать. Не забываем, что у профессии электрик есть свой главный минус – работа опасная, т.к. вы будете иметь дело с электрическим током.

Прежде чем приступить к работам, связанным с электричеством, необходимо немного «подковаться» теоретически в этом вопросе. Если говорить просто, то обычно под электричеством подразумевается это движение электронов под действием электромагнитного поля. Главное - понять, что электричество - энергия мельчайших заряженных частиц, которые движутся внутри проводников в определенном направлении.

Постоянный ток практически не меняет своего направления и величины во времени. Допустим, в обычной батарейке постоянный ток. Тогда заряд будет перетекать от минуса к плюсу, не меняясь, пока не иссякнет.

Переменный ток - это ток, который с определенной периодичностью меняет направление движения и величину.

Представьте ток как поток воды, текущий по трубе. Через какой-то промежуток времени (например, 5 с) вода будет устремляться то в одну сторону, то в другую. С током это происходит намного быстрее - 50 раз в секунду (частота 50 Гц). В течение одного периода колебания величина тока повышается до максимума, затем проходит через ноль, а потом происходит обратный процесс, но уже с другим знаком. На вопрос, почему так происходит и зачем нужен такой ток, можно ответить, что получение и передача переменного тока намного проще, чем постоянного.

Получение и передача переменного тока тесно связаны с таким устройством, как трансформатор. Генератор, который вырабатывает переменный ток, по устройству гораздо проще, чем генератор постоянного тока. Кроме того, для передачи энергии на дальнее расстояние переменный ток подходит лучше всего. С его помощью при этом теряется меньше энергии.

При помощи трансформатора (специального устройства в виде катушек) переменный ток преобразуется с низкого напряжения на высокое и наоборот, как это представлено на иллюстрации. Именно по этой причине большинство приборов работает от сети, в которой ток переменный. Однако постоянный ток также применяется достаточно широко - во всех видах батарей, в химической промышленности и некоторых других областях.

Многие слышали такие загадочные слова, как одна фаза, три фазы, ноль, заземление или земля, и знают, что это важные понятия в мире электричества. Однако не все понимают, что они обозначают и какое отношение имеют к окружающей действительности. Тем не менее знать это обязательно. Не углубляясь в технические подробности, которые не нужны домашнему мастеру, можно сказать, что трехфазная сеть - это такой способ передачи электрического тока, когда переменный ток течет по трем проводам, а по одному возвращается назад. Вышесказанное надо немного пояснить. Любая электрическая цепь состоит из двух проводов. По одному ток идет к потребителю (например, к чайнику), а по другому возвращается обратно. Если разомкнуть такую цепь, то ток идти не будет. Вот и все описание однофазной цепи.

Тот провод, по которому ток идет, называется фазовым, или просто фазой, а по которому возвращается - нулевым, или нолем. Трехфазная цепь состоит из трех фазовых проводов и одного обратного. Такое возможно потому, что фаза переменного тока в каждом из трех проводов сдвинута по отношению к соседнему на 120 °C. Более подробно на этот вопрос поможет ответить учебник по электромеханике. Передача переменного тока происходит именно при помощи трехфазных сетей. Это выгодно экономически - не нужны еще два нулевых провода.

Подходя к потребителю, ток разделяется на три фазы, и каждой из них дается по нолю. Так он попадает в квартиры и дома. Хотя иногда трехфазная сеть заводится прямо в дом. Как правило, речь идет о частном секторе, и такое положение дел имеет свои плюсы и минусы. Об этом будет рассказано позднее. Земля, или, правильнее сказать, заземление - третий провод в однофазной сети. В сущности, рабочей нагрузки он не несет, а служит своего рода предохранителем. Это можно объяснить на примере. В случае, когда электричество выходит из-под контроля (например, короткое замыкание), возникает угроза пожара или удара током. Чтобы этого не произошло (то есть значение тока не должно превышать безопасный для человека и приборов уровень), вводится заземление. По этому проводу избыток электричества в буквальном смысле слова уходит в землю.

Еще один пример. Допустим, в работе электродвигателя стиральной машины возникла небольшая поломка и часть электрического тока попадает на внешнюю металлическую оболочку прибора. Если заземления нет, этот заряд так и будет блуждать по стиральной машине. Когда человек прикоснется к ней, он моментально станет самым удобным выходом для данной энергии, то есть получит удар током. При наличии провода заземления в этой ситуации излишний заряд стечет по нему, не причинив никому вреда. В дополнение можно сказать, что но- левой проводник также может быть заземлением и, в принципе, им и является, но только на электростанции. Ситуация, когда в доме нет заземления, небезопасна. Как с ней справиться, не меняя всю проводку в доме, будет рассказано в дальнейшем.

Внимание!

Некоторые умельцы, полагаясь на начальные знания по электротехнике, устанавливают нулевой провод как заземляющий. Никогда так не делайте. При обрыве нулевого провода корпуса заземленных приборов окажутся под напряжением 220 В.

При выходе из строя какого-нибудь электроблока правильным решением будет вызвать специалиста, который быстро устранит проблему.

Если такой возможности нет, уроки для электриков помогут самостоятельно устранить ту или иную поломку.

При этом стоит помнить о технике безопасности, дабы избежать серьезных увечий.

Техника безопасности

Правила безопасности нужно выучить наизусть - это сохранит здоровье и жизнь при устранении проблем с электричеством. Вот самые важные азы электрики для начинающих:

Для выполнения монтажных работ необходимо приобрести датчик (индикатор фазы), похожий на отвертку или шило. Это устройство позволяет найти провод, находящийся под напряжением - при его обнаружении на датчике загорается индикатор. Приборы работают по-разному, например, когда пальцем прижат соответствующий контакт.

Перед началом работ необходимо с помощью индикатора удостовериться в том, что все провода не обесточены.

Дело в том, что иногда проводку прокладывают неправильно - автомат на входе отключает только один провод, не обесточивая всю сеть. Такая ошибка может привести к печальным последствиям, ведь человек надеется на полное отключение системы, в то время как некоторый участок может все еще быть активным.

Виды цепей, напряжение и сила тока

Электрические цепи могут быть связаны параллельно либо последовательно. В первом случае электрический ток распределяется по всем цепям, которые соединяются параллельно. Получается, что суммарная единица будет равна сумме тока в любой из цепей.

Параллельные соединения имеют одинаковое напряжение. В последовательной комбинации ток переходит из одной системы в другую. В итоге в каждой линии протекает одинаковый ток.

Не имеет смысла останавливаться на технических определениях напряжения и силы тока (А). Гораздо понятнее будет пояснение на примерах. Так, первый параметр влияет на то, насколько хорошо нужно изолировать различные участки. Чем оно больше, тем выше вероятность того, что в каком-то месте случится пробой. Из этого следует, что высокому напряжению необходима качественная изоляция . Оголенные соединения необходимо держать подальше друг от друга, от других материалов и от земли.

Электрическое напряжение (U) принято измерять в Вольтах.

Более мощное напряжение несет большую угрозу для жизни. Но не стоит полагать, будто низкое абсолютно безопасно. Опасность для человека зависит и от силы тока, которая проходит через организм. А этот параметр уже напрямую подчиняется сопротивлению и напряжению. При этом сопротивление организма связано с сопротивлением кожи, которое может меняться в зависимости от морального и физического состояния человека, влажности и многих других факторов. Бывали случаи, когда человек умирал от удара током всего 12 вольт.

Кроме того, в зависимости от силы тока подбираются различные провода. Чем выше A, тем толще нужен провод.

Переменная и постоянная величины

Когда электричество только зарождалось, потребителям поставляли постоянный ток. Однако выяснилось, что стандартную величину 220 вольт практически невозможно передать на большое расстояние.

С другой стороны, нельзя подводить тысячи вольт - во-первых, это опасно, во-вторых, тяжело и дорого изготавливать приборы, работающие на таком высоком напряжении. В результате было решено преобразовывать напряжение - до города доходит 10 вольт, а в дома уже попадает 220. Преобразование происходит при помощи трансформатора .

Что касается частоты напряжения, то она составляет 50 Герц. Это значит, что напряжение меняет свое состояние 50 раз в минуту. Оно стартует с нуля и вырастает до отметки в 310 вольт, затем падает до нуля, затем до -310 вольт и опять поднимается до нуля. Все работа протекает в циклическом ключе. В таких случаях напряжение в сети равняется 220 вольт - почему не 310, будет рассказано дальше. За границей встречаются разные параметры - 220, 127 и 110 вольт, а частота может быть 60 герц.

Мощность и другие параметры

Электрический ток необходим для выполнения какой-либо работы, например, для вращения двигателя или нагрева батарей. Можно вычислить, какую работу он совершит, умножая силу тока на напряжение. Например, электронагреватель, имеющий 220 вольт, и обладающий мощностью 2.2 кВт, будет расходовать ток в 10 А.

Стандартное измерение мощности происходит в ваттах (Вт). Электрический ток силой 1 ампер с напряжением 1 вольт может выделить мощность 1 ватт.

Вышеприведенная формула используется для обоих видов тока. Однако вычисление первого имеет некоторую сложность, - необходимо умножить силу тока на U в каждую единицу времени. А если учесть, что у переменного тока все время меняются показатели напряжения и силы, то придется брать интеграл. Поэтому было применено понятие действующего значения .

Грубо говоря, действующий параметр - это среднее значение силы тока и напряжения, выбранное специальным путем.

Переменный и постоянный ток имеет амплитудное и действующее состояние. Амплитудный параметр - максимальная единица, до которой может подниматься напряжение. Для переменного вида амплитудное число равняется действующему, умноженному на √ 2. Этим объясняются показатели напряжения 310 и 220 В.

Закон Ома

Следующим понятием в основах электрики для начинающих является закон Ома. Он утверждает, что сила тока равна напряжению, поделенному на сопротивление. Этот закон действует как для переменного тока, так и для постоянного.

Сопротивление измеряют в омах. Так, сквозь проводник с сопротивлением 1 ом при напряжении 1 вольт проходит ток 1 ампер. Закон Ома порождает два интересных следствия:

  • Если известна A, протекающая через систему, и сопротивление цепи, то можно вычислить мощность.
  • Мощность также можно посчитать, зная действующее сопротивление и U.

При этом для определения мощности берется не напряжение сети, а U, примененное к проводнику. Получается, если какой-либо прибор включен в систему через удлинитель, то действие будет применено как к прибору, так и к проводам удлинительного устройства. В результате провода будут нагреваться.

Конечно, нежелательно, чтобы соединения нагревались, так как именно это приводит к различным нарушениям работы электропроводки.

Однако основные проблемы заключаются не в самом проводе, а в различных местах соединения. В этих точках сопротивление бывает в десятки раз выше, чем по периметру провода. Со временем в результате окисления сопротивление может лишь повышаться.

Особенно опасными являются места соединения различных металлов. В них процессы окисления проходят гораздо быстрее. Самые частые зоны соединений:

  • Места скручивания проводов.
  • Клеммы выключателей, розеток.
  • Зажимные контакты.
  • Контакты в распределительных щитках.
  • Вилки и розетки.

Поэтому при ремонте первым делом стоит обратить внимание на эти участки. Они должны быть доступными для монтажа и контроля.

Выполняя вышеописанные правила, можно самостоятельно решать некоторые бытовые вопросы, связанные с электрикой в доме. Главное - помнить о технике безопасности.

Вероятно, нет необходимости объяснять тебе значение электричества для обеспечения нормальной жизнедеятельности каждого человека. Не будет преувеличением сказать, что сегодня оно является такой же её

составной частью, как вода, тепло, пища. И если в доме погас свет, ты,обжигая пальцы о зажжённую спичку, немедленно звонишь к нам. Долгий и трудный путь проходит электричество прежде, чем попасть в твой дом. Выработанное из топлива на электростанции, оно путешествует через трансформаторные и коммутационные подстанции, через тысячи километров линий, укреплённых на десятках тысяч опор.

Электричество сегодня – это совершенная технология, надёжное и качественное электроснабжение, забота о потребителе и его обслуживание.

Однако, это ещё не всё. Конечное звено в электрической цепочке – это электрооборудование твоего дома. А оно, как и всякое другое, требует екоторых знаний для его правильной эксплуатации. Поэтому мы призываем тебя к сотрудничеству с нами и с этой целью даём некоторые рекомендации и предостережения. Предостережения выделены красным цветом.

Речь пойдёт о следующем:

1. Правовые аспекты. Абонент должен быть ознакомлен со своими правами, обязанностями и ответственностью по отношению к энергоснабжающей организации. То же - по отношению энергоснабжающей организации к нему.

2. Знакомство с квартирной электропроводкой, коммутационной аппаратурой и установочными изделиями.

4. Электричество требует не только определённых знаний, но и строгого соблюдения определённых правил от пользователя. Оно представляет опасность, как для тех, кто не умеет им пользоваться, так и для недисциплинированных «умельцев». Поэтому мы ознакомим тебя с основами электробезопасности.

Мы призываем тебя с пониманием отнестись к нашим рекомендациям и предостережениям. Мы также надеемся, что ты не будешь наносить ущерб упомянутым выше сетевым сооружениям и электрооборудованию.

Желаем тебе всех благ, в том числе и тех, которые даёт электроэнергия.

Азбука электричества

Электрический ток представляет собой направленное движение отрицательно заряженных элементарных частиц – электронов от одного полюса замкнутой электрической цепи к другому. Электроны, способные перемещаться, существуют только в определённых веществах, называемых проводниками. Вещества, не содержащие свободных электронов, принадлежат к категории диэлектриков (изоляторов).

Чтобы движение свободных электронов в проводнике от одного полюса к другому было возможным, между полюсами должна существовать разность потенциалов или напряжение. Его можно уподобить некоему давлению, толкающему электроны. Чтобы непрерывно поддерживать протекание тока в замкнутой электрической цепи, необходим источник электродвижущей силы, который вырабатывает электрическую энергию, преобразуя в неё другие виды энергии.

Количество электронов, проходящее через поперечное сечение проводника в единицу времени, может быть более или менее значительным. Оно определяет интенсивность – силу тока.

В зависимости от материала, длины и сечения материала проводник оказывает прохождению тока большее или меньшее сопротивление. Оно проявляется, в частности, в нагреве проводника.
Чем длиннее проводник, тем больше его сопротивление. Но чем больше сечение проводника, тем меньше его сопротивление.
Источник электроэнергии характеризуется мощностью, то есть количеством электроэнергии, которую он вырабатывает в единицу времени. Электрическое устройство (прибор), потребляющее электроэнергию, также характеризуется мощностью.

Напряжение измеряется в вольтах (В).

Сила (величина) тока измеряется в амперах (А).

Сопротивление измеряется в Омах (Ом).

Мощность измеряется в ваттах (Вт). 1000 ватт составляют 1 киловатт
(кВт).

Выработка и потребление электроэнергии измеряются в киловатт-часах (кВт-ч). (Не путайте их с киловаттами).

Между этими величинами существуют следующие зависимости:

1.Величина тока равняется напряжению, приложенному к концам проводника, делённому на его сопротивление (закон Ома).

2.Мощность электроустановки равна произведению напряжения на ток.

3. Количество потреблённой электроэнергии равно произведению мощности электроустановки на время её работы.

4. Количество тепла, превращённого из электроэнергии, пропорционально величине тока, возведенную во вторую степень, сопротивлению проводника и времени. Например, при увеличении тока в два раза, выделяется в четыре раза больше тепла.

На паспортной табличке электрического изделия, а также в инструкции по его эксплуатации обязательно указываются его номинальные данные: напряжение, мощность (или величина тока) и др.


Аварийные и ненормальные режимы

Короткое замыкание. Если перемкнуть два провода, подводящие ток, к электрическому прибору, ток резко возрастёт (в 10 раз и более). Возрастание тока в 10 раз приведёт к увеличению количества тепла в проводах в 100 раз. При этом проводка будет разрушена и возникнет опасность пожара. Во избежание этого сеть должна быть оборудована устройством мгновенного автоматического отключения.

Перегрузка. Такая же опасность разрушения, но за более продолжительное время возникает при превышении силы тока сверх нормы, допустимой для квартирной проводки. И в этом случае она должна быть автоматически отключена.
Отклонение напряжения. На паспортном щитке электрического прибора нанесено его номинальное напряжение, то есть напряжение, обеспечивающее его нормальную работу. Как правило, оно составляет 230 вольт. При отклонениях напряжения, как в сторону увеличения, так и в сторону уменьшения нарушается нормальная работа и сокращается срок службы электроприбора. При значительном отклонении напряжения возможно повреждение электроприбора. Если в вашей квартире напряжение ниже 200 В, необходимо пользоваться стабилизаторами напряжения.
Скачки напряжения. Речь идет о кратковременном увеличении напряжения, которое может достичь сотен и даже более тысячи вольт. Такое высокое напряжение может повредить некоторые домашние электроприборы. К их числу относятся приборы, которые собираются из мельчайших электронных деталей: компьютеры, телевизоры,
музыкальные центры, видеомагнитофоны и т.п.
Есть несколько факторов, которые вызывают «скачки напряжения»:

Удар молнии в провода линии электропередачи или в непосредственной близости от неё.

Операции автоматической коммутации (включение и отключение мощных электродвигателей промышленных предприятий и др.).

Незапланированные переключения, которые приходится выполнять при возникновении неблагоприятных условий.

О защите от «скачков напряжения» будет сказано далее.

«Перекос» напряжения. Это явление состоит в том, что одна часть электроприборов оказывается под завышенным напряжением, а другая – под заниженным. «Перекос» напряжения происходит при неисправности в сети 400/230 В. Вы можете его заметить по ненормальной работе ваших электроприборов. Так, лампочки меньшей мощности светятся ярким светом, а лампочки большей мощности горят «вполнакала».

Если при этом квартирная сеть не отключилась автоматически, её надо немедленно отключить вручную.

Электрический щиток

В этом разделе мы разберемся с составом электрического щитка.

Ваша квартира питается электроэнергией по двум проводам. Один провод называется фазным, а другой – нулевым. Нулевой провод заземлён. Однако ошибочно считать, что он не представляет опасность.

Прикосновение, как к фазному, так и к нулевому проводу опасно для жизни!

В настоящее время существуют здания с трёхпроводной сетью: фазный провод, нулевой провод, заземляющий провод. Заземляющий провод предназначен для заземления металлических корпусов электрических приборов (более подробно об этом см. в главе «Электробезопасность»). Если заземляющий провод отсутствует, то эти приборы включаются без заземления.

Компоненты электрического щитка

В состав электрического щитка входят электросчетчик, предохранители (или автоматы), устройство защитного отключения.

Счётчик электроэнергии предназначен для измерения потреблённой электроэнергии, которую необходимо своевременно оплатить. Он подключается непосредственно на вводе и может быть установлен в квартире или на лестничной площадке на коллективном щитке учёта. Если счётчик установлен в квартире, то владелец должен обеспечить его сохранность в исправном состоянии: оберегать от ударов и сотрясений, не загромождать подход к нему, обеспечить возможность удобной замены и снятия показаний. Нельзя переносить счётчик без согласования с энергонадзором.
Если вы заметите признаки неисправности счётчика (например, диск счётчика не вращается при наличии нагрузки или вращается при её отсутствии), необходимо немедленно вызвать представителя энергонадзора.
Не пытайтесь нарушить правильность учёта с целью хищения электроэнергии!

Кража электроэнергии не менее постыдна, чем любая кража. Все «способы» хищения хорошо известны энергонадзору, поэтому похититель неминуемо будет разоблачён и привлечён к ответственности. Более того. Не все эти «способы» достаточно безопасны. Известны многочисленные случаи электротравматизма, связанные с попытками хищения.

Для определения расхода электроэнергии за определённый промежуток времени необходимо из показаний счётчика, взятых в конце промежутка, вычесть показания, взятые в начале промежутка. Десятые доли киловатт-часа (в красном окошке после запятой) отбрасываются.

Пример 1. Конечные показания счётчика – 5124. Начальные показания счётчика – 4975. Расход электроэнергии составит: 5124 – 4975 = 149 киловатт-часов.

Пример 2. Конечные показания счётчика – 0047. Начальные показания счётчика - 9950

Расход электроэнергии составит: 10047 – 9950 = 97 киловатт-часов.

На щитке счётчика наносится его передаточное число. Это - число оборотов диска, соответствующее одному киловатт-часу. Оно позволяет определить суммарную мощность нагрузки. Отсчитайте число оборотов диска за определённое время. Умножьте его на 3600 и разделите на передаточное число и на время

Пример 3. Передаточное число счётчика: 1 кВт-ч – 450 оборотов диска. Счётчик сделал 10 оборотов за 60 секунд. Тогда мощность его нагрузки составит: КВт.

Разделив мощность в ваттах на напряжение, мы получим ток нагрузки:

1330/230 = 5,8. А

Предохранитель – электрический аппарат, осуществляющий автоматическое отключение электрической цепи при перегрузке или коротком замыкании. Пробочный предохранитель состоит из сменной плавкой вставки – тонкой проволоки, запаянной в трубку. Вставка размещается в корпусе с контактным устройством – пробке, которая ввинчивается в патрон.

Предохранители устанавливаются и в фазном, и в нулевом проводе. При перегрузках и токах короткого замыкания плавкая вставка нагревается до температуры плавления металла и, расплавляясь, разрывает электрическую цепь (перегорает). После отключения плавкую вставку следует заменить новой.

Пробки одноразового действия, в которых вставка напаивалась, необходимо изъять из обращения.

Автоматы выполняют те же функции, что и предохранители, но по сравнению с ними обеспечивают многократность действия, более высокую точность установки на определённый ток отключения и удобство ручного включения и отключения.

Автомат отключается под действием пружины, которая во включённом положении удерживается защёлкой. Средством защиты в этих автоматах является электромагнитный или биметаллический элемент, которые срабатывают при перегрузках и коротких замыканиях, освобождая при этом защёлку.

Широкое распространение получили пробочные автоматы. Для их установки подходит патрон пробочного предохранителя. Автомат имеет две кнопки: для включения и для отключения. Для включения автомата
после его автоматического отключения необходимо предварительно нажать на отключающую кнопку (доотключить). Аналогичное действие выполняется и в автоматах других типов (например, перевод «язычка» в
нижнее положение).

Автоматы и предохранители характеризуются номинальным током. Это - максимальный ток нагрузки, обеспечивающий их продолжительную работу. Номинальный ток автомата или плавкой вставки должен быть выбран в соответствии с максимально возможным током нагрузки в вашей квартире. При завышенном номинальном токе защита может быть не обеспечена. При заниженном – она будет излишне срабатывать, вызывая отключение.

Методика определения тока нагрузки с помощью счётчика приведена выше.

При этом необходимо включить только те приборы, которые в реальных условиях работают одновременно. Определённый таким образом ток нагрузки округляют в большую сторону до стандартного ближайшего номинального тока.

Не заменяйте перегоревшую плавкую вставку «жучком» (проволокой)!

Не перемыкайте зажимы автомата!

Убедитесь, что при вывернутых пробках (отключённых автоматах) напряжение в квартире отсутствует!

Устройство защитного отключения (УЗО) предназначено для автоматического отключения квартирной сети при попадании человека под напряжение, а также при возникновении неисправности в сети и электроприборах. Этим устройством весьма рекомендуется дополнить существующие защитные устройства. Установку УЗО должен выполнить квалифицированный электрик.

Квартирная электропроводка

В современных зданиях квартирная электропроводка, как правило, выполнена алюминиевым проводом сечением 4 кв. мм. Пропускная способность этой электропроводки составляет около 10 А.

Как указывалось в гл.3, таким должен быть и номинальный ток плавкой вставки или автомата. Этот ток соответствует максимальной мощности включенных приборов – 2300Вт (230.10). Поэтому для приборов значительной мощности (электроплиты, кондиционеры, крупные обогреватели и пр.) на электрощитке вашей квартиры следует подготовить отдельную цепь, Необходимо также установить отдельную розетку, отдельный автомат, правильно распределить мощность для каждого постоянно действующего прибора и правильно распределить мощность приборов между электрическими цепями.

Электрическая проводка выполняется согласно действующим нормам и правилам. При наличии нескольких присоединений в одной квартире каждый автомат должен быть снабжён надписью с наименованием присоединения.

Не занимайтесь самостоятельно прокладкой или реконструкцией проводки. Эту работу может выполнить только квалифицированный электрик.
Электрическую проводку следует оберегать от повреждений. Прежде, чем вбить гвоздь в стену, необходимо убедиться, что в этом месте электропроводка отсутствует (свериться по чертежу или проверить при помощи специального прибора).

Если квартиру заливает водой, необходимо немедленно отключить вашу квартирную сеть и включить её только тогда, когда стены полностью просохнут. Такое же отключение необходимо выполнить при возникновении или угрозе возникновения чрезвычайных ситуаций (пожар, наводнение, технологические аварии и др.).

Электрические розетки служат для включения электрических приборов в сеть. Вилка электроприбора должна подходить к розетке, а номинальный ток электроприбора не должен превышать номинальный ток розетки. Розетка должна быть надёжно закреплена, не иметь не иметь видимых повреждений, копоти, подгоревших контактов. В противном случае её следует заменить.

Прежде, чем пользоваться розеткой, убедитесь, что у вас сухие руки, и вы обуты в сухую обувь. Если электрический прибор снабжён выключателем, то его необходимо раньше выключить этим выключателем, а затем вытянуть вилку из розетки. Включение производится в обратном порядке.
При выключении электроприбора не тяните за шнур. Придерживая розетку одной рукой, другой рукой выньте вилку.
Удлинитель. Пользуйтесь шнуром-удлинителем в случае необходимости и на короткий срок. Не пользуйтесь удлинителями кустарного изготовления, а также удлинителями, имеющими повреждения оболочки. Повреждённый удлинитель следует не ремонтировать, а изъять из пользования. Удлинитель подключают сначала к прибору, а потом к розетке. Выключение производится в обратном порядке.

Разветвитель. При пользовании им необходимо следить, чтобы розетка не перегружалась суммарной нагрузкой. Предпочтительнее пользоваться не «тройником», а разветвителем, снабжённым шнуром и выключателем.

Если в квартире исчезло напряжение

У соседей напряжение также исчезло

Сообщить в энергоснабжающую организацию. Не заниматься устранением неполадок самому.

У соседей напряжение есть. Место короткого замыкания известно.

Отсоединить от сети повреждённый прибор (шнур).

Заменить сгоревшие вставки.

Отключить все электроприборы в квартире.

Вкрутить пробки.

После появления напряжения включить электроприборы

Проверить положение автоматов. Отключенные автоматы включить, предварительно подготовив их к включению. Если автомат не включается, выждите 5 минут.

Место короткого замыкания неизвестно.

Отключить в квартире освещение и все электроприборы.
Вывернуть пробки, осмотреть вставки.
Заменить сгоревшие вставки.
Вкрутить пробки.

Проверить положение автоматов. Отключенные автоматы включить, предварительно подготовив их к включению. Если автомат не включается, выждите 5 минут.

Включать по одному все приборы и освещение.

При последнем действии по п.3 произошло повторное отключение.

Отсоединить прибор, включённый последним. Далее действовать согласно п.2

После повторного включения напряжение в квартире появилось. Причину отключения не удалось выявить.

Вероятной причиной является перегрузка. Отключите ненужные электроприборы.
Не открывайте распределительные щиты общего пользования!
Дождитесь прихода электрика.

Бытовые электроприборы

В вашей квартире находится множество разнообразных электрических приборов, и их количество растёт с каждым годом. Всеми приборами можно и нужно пользоваться более эффективно, экономически выгодно и, главное, безопасно. Для этого надо знать несколько общих положений.

Старайтесь изъять из пользования устаревшие приборы. Современные электроприборы удобны в обращении, более эффективны и, как правило, более выгодны экономически.
Важно, чтобы прибор, который вы приобретаете, соответствовал вашим потребностям. Для этого следует принять во внимание состав семьи, образ жизни, количество детей, частоту пользования и т.д., и только тогда решить, какими характеристиками должен обладать электроприбор, который вы хотите приобрести.

Рекомендуется проанализировать и сравнить потребление электроэнергии различными электроприборами, данные о которых, как правило, приводятся на фабричном ярлыке либо в прилагаемой к прибору инструкции по эксплуатации.

Убедитесь, что проводка и защитные устройства вашей квартиры подходят для установки приобретаемого электроприбора.


Прежде, чем включить электроприбор внимательно ознакомьтесь с инструкцией по его эксплуатации!

Отопительные приборы

Приводим сравнительную характеристику некоторых отопительных приборов.

Рефлектор. Состоит из одного и более нагревательных элементов и отражателя. Энергия передаётся излучением отражателя («зеркала») в ту сторону, куда повёрнут прибор. Потребляемая мощность – 1200 – 3200 Вт. К преимуществам прибора относятся его относительная дешевизна, а также начало нагрева сразу после включения.

Вместе с тем, рефлекторы обладают рядом недостатков:
Тепло распространяется только в одну сторону, помещение прогревается медленно.

Высокая температура может стать причиной возгорания предметов, находящихся вблизи рефлектора.

Высокая температура и недостаточное прикрытие нагревательных элементов представляют опасность для детей.

Отсутствие терморегулятора.

Высушивает воздух в комнате.

Тепловентилятор. Воздух поступает через отверстия в корпусе, нагревается спиралями (одной или несколькими) и распространяется с помощью вентилятора. Потребляемая мощность – 1000 – 3000 Вт. Как равило, в приборе имеются терморегулятор и переключатель режимов (изменяет количество включенных спиралей). Прибор безопасен, так как спирали надёжно скрыты. Летом его можно использовать в качестве вентилятора. Тепловентилятор благодаря принудительной циркуляции быстро и равномерно прогревает помещение. Недостатки прибора:
Высушивает воздух в комнате.
Мощная воздушная струя и шум при работе могут создавать неприятное ощущение у людей с повышенной чувствительностью.

Воздухонагреватель. Воздух поступает через отверстия в нижней части рибора, нагревается от спиралей и выходит сверху. Потребляемая мощность – 500 – 3000 Вт. Прибор также безопасен и может быть установлен в детской комнате. Он также снабжён терморегулятором и переключателем режимов. Однако, по сравнению с тепловентилятором он более медленно прогревает помещение. Воздухонагреватель также высушивает воздух в комнате.

Масляный обогреватель (радиатор). Он содержит нагревательный элемент (один или более), который подогревает масло, находящееся в замкнутой системе. При соприкосновении с нагревателем воздух в комнате нагревается. Потребляемая мощность – 2000 – 2500 Вт. Прибор совершенно безопасен, снабжён переключателем режима и терморегулятором. Тепло распространяется во все стороны равномерно, и воздух в комнате не высушивается. К недостаткам прибора относятся большой вес, относительно высокая стоимость, медленный прогрев помещения.

Как сэкономить электроэнергию при пользовании отопительными приборами.

1. Не допускайте утечек тепла. Важно добиться плотного прилегания дверей и окон в комнатах, для чего следует ликвидировать щели между окном и рамой, дверью и косяком. Проникновение воздуха через щели ведёт к потерям тепла, а, следовательно, и к увеличению расхода электроэнергии.

2. Не обогревайте пустые помещения.

3. Зимой рекомендуется поддерживать температуру в комнате 18 - 20°С при условии, что люди, находящиеся в квартире, одеты в удобную одежду, соответствующую сезону. Если отопительный прибор не снабжён терморегулятором, за температурой воздуха в помещении можно проследить по термометру, установленному на стене. Терморегулятор позволяет установить нужную температуру в обогреваемой комнате. Он выключает прибор, как только температура достигнет заданного уровня, и автоматически включает его, когда температура ниже заданной.

4. Должно быть обеспечено свободное поступление нагретого воздуха от прибора в комнату (особенно при пользовании тепловентилятором). Не используйте прибор для сушки одежды, не загромождайте его различными предметами.

Не помещайте вблизи отопительного прибора горючих материалов и легковоспламеняющихся предметов!

Холодильник

Мощность этого электроприбора сравнительно невелика, однако, он может потреблять достаточное количество электроэнергии, так как работает непрерывно 24 часа в сутки. Для экономии электроэнергии выполняйте ряд рекомендаций.
Выбирайте объём камер приобретаемого холодильника в соответствии с требуемым количеством продуктов, которые будут в нём храниться.
Место установки холодильника должно быть удалено от источников тепла и защищено от солнечных лучей.

Для обеспечения полной изоляции рекомендуется плотно закрывать дверцы и периодически проверять изолирующие резиновые прокладки. Деформированные прокладки ведут к проникновению тёплого внешнего
воздуха в камеры, что, в свою очередь, влечёт за собой повышенное потребление электроэнергии. Дверцы открывайте как можно реже и не держите их долго открытыми.

Следите, чтобы задняя стенка холодильника не покрывалась пылью. Обеспечивайте свободную циркуляцию воздуха вокруг холодильника.
Не ставьте в холодильник тёплую пищу. Подождите, пока пища остынет до комнатной температуры.

Установите термостат на температуру 5. - 7..
Своевременно размораживайте и чистите холодильник. Нарост льда существенно увеличивает расход электроэнергии. Пользуйтесь разведенным в воде уксусом – это поможет избавиться от неприятного запаха. Перед размораживанием снизьте температуру в морозильной камере. Это позволит оставаться продуктам холодными в течение длительного срока после извлечения из морозильной камеры.

Морозильную камеру рекомендуется заполнять, по крайней мере, на две трети своей ёмкости, что обеспечит её эффективную работу. С другой стороны, в неё не следует помещать слишком много продуктов, так как необходимо обеспечить свободную циркуляцию воздуха в камере.

Стиральная машина

Стиральная машина – один из самых распространённых электроприборов, без которых трудно представить нашу жизнь. Это так просто – закладываем бельё, насыпаем стиральный порошок, наливаем смягчитель, нажимаем кнопку и через некоторое время получаем чистое приятно пахнущее бельё. Важно знать, что не все стиральные машины одинаковы, как и не одинаковы требования к стирке в разных семьях. Поэтому, прежде чем приобрести стиральную машину необходимо учесть:
Состав вашей семьи. Чем больше семья, тем больше должна быть мощность машины и объём её стирального бака.

Скорость отжима. Выбирайте машину с более высокой скоростью отжима, поскольку, чем она выше, тем суше выстиранное бельё.
Потребление машиной электроэнергии, воды и моющих средств. Последние модели стиральных машин более экономичны.
Современная стиральная машина потребляет ток более 10 А. Её нельзя включать в общую квартирную сеть. Подготовка базы для стиральной машина включает в себя выполнение прокладку отдельной электропроводки, установку автомата на 16 А и отдельной трёхполюсной розетки.
Следующие рекомендации помогут вам сэкономить электроэнергию при пользовании стиральной машиной:

Рекомендуется закладывать в бак не больше и не меньше того количества белья, на которое она рассчитана. Перегрузка, так же, как и недогрузка неэкономична. Кроме того, страдает и качество стирки.
Рекомендуется использовать программу с предварительным полосканием только для очень загрязнённого белья. Без предварительного полоскания экономится около 20% электроэнергии.

Стирка при температуре воды 60. вместо 90. сэкономит вам около 25% электроэнергии. Поэтому, если бельё не слишком загрязнено, имеет смысл стирать его при более низкой температуре.

Электрическая плита

Электрическая плита так же, как и стиральная машина, требует прокладки отдельной электропроводки, установки автомата на 16 А и отдельной трёхполюсной розетки. Рекомендуется отдать предпочтение плите не столь мощной, но изготовленной по современной технологии – это позволит вам экономить электроэнергию.
Для эффективной и экономной эксплуатации рекомендуется:

Диаметр кастрюли должен соответствовать диаметру конфорки.
Кастрюля должна иметь гладкое дно и закрыта подходящей крышкой
При варке пищи в кастрюле не должно быть много воды.
После того, как вода в кастрюле закипит, рекомендуется снизить температуру до необходимого для продолжения варки уровня.

Незадолго до окончания приготовления пищи рекомендуется выключить конфорку, так как её медленное остывание обеспечит достаточно тепла для завершения варки.

При приготовлении пищи старайтесь, как можно реже поднимать крышку, что сохраняет тепло, предотвращает избыточный расход энергии и сокращает время приготовления пищи.
Пользуйтесь скороваркой – это сэкономит и время и электроэнергию.Воздерживайтесь от предварительного нагрева духовки, если этого не требует рецепт;

Не открывайте дверцу духовки без необходимости.

Освещение

Освещение жилого помещения должно соответствовать гигиеническим нормам. Недостаточная освещённость наносит ущерб здоровью. Так, например, не следует выключать потолочную лампу, освещая комнату только настольной лампой, выключать полностью освещение при просмотре телевизионных передач и пр. Осветительный элемент выбирается в зависимости от того, где он будет находиться, и от возлагаемой на него функции (общее, местное, декоративное и др.). Правильно выбранные тип и мощность лампы дадут возможность эффективно и экономно расходовать электроэнергию.


Существует широкий ассортимент электроламп, из которых пока самыми распространёнными являются лампы накаливания. Эти лампы дешевы, не требуют дополнительных комплектующих деталей. Заменить сгоревшую лампу не представляет сложности. Лампы накаливания наиболее точно передают цвет окружающих предметов. К недостаткам ламп накаливания относится относительно небольшой срок службы (до 1000 часов). Другой существенный недостаток – неэкономичность. Лишь мене 5% затраченной энергии преобразуется излучаемый свет; всё
остальное уходит на нагревание.

Флуоресцентные лампы наиболее распространены после ламп накаливания. Такая лампа потребляет в 6 раз меньше электроэнергии, чем лампа накаливания, при равной освещённости, а также имеет более продолжительный срок службы. Флуоресцентная лампа действует только с помощью дополнительных приборов – дросселя и стартёра. К недостаткам флуоресцентной лампы относятся также её большие размеры, незначительный шум и некоторое искажение цвета освещаемых предметов.

Одно из важнейших направлений усовершенствования технологии освещения – это создание флуоресцентных компакт-ламп. По своей конструкции и принципу действия компакт-лампа ничем не отличается от флуоресцентной за исключением размеров. По сравнению с лампами накаливания флуоресцентные комакт-лампы дают возможность сократить затраты электроэнергии на 70% - 85%, при этом срок их службы в 8 – 13 раз выше. Поэтому вскоре они заменят в быту лампы накаливания.

Для экономии электроэнергии без ухудшения качества освещения рекомендуется:

Максимальное использование естественного освещения.

Следите за чистотой окон.

Не загромождайте подоконники.

Не завешивайте окно несколькими занавесями и шторами.

Применение соответствующих осветительных приборов.

Использование светлых оттенков (отражающих свет) для окраски стен, потолка пола и при выборе цвета мебели.
Применение средств управления освещением (сдвоенные выключатели для люстр, выключатели с реостатом и пр.).
Использование одной лампы накаливания большой мощности вместо двух маломощных. Например, использование одной лампы мощностью 100 Вт вместо двух 60-ваттных позволяет сократить потребление электроэнергии на 20%, не говоря уже о снижении расходов на покупку ламп.
Продуманная система освещения в доме существенно влияет на расход электроэнергии.

Электронные приборы

К электронным приборам в вашей квартире, чувствительным к скачкам напряжения, относятся телевизоры, видеомагнитофоны, музыкальные центры, компьютеры и др., которые собираются из мельчайших электронных деталей на базе прогрессивных технологий. Именно они могут пострадать в первую очередь от скачков напряжения, если при их создании не была предусмотрена соответствующая защита. При этом сокращается срок службы прибора, а в некоторых случаях может произойти его поломка. Для защиты чувствительных электронных приборов рекомендуется следующее:

Не подключать чувствительные электронные приборы к той же розетке или к той же цепи, к которой уже подключён другой прибор с электромотором, например, холодильник, стиральная машина.
Выключать чувствительные электронные приборы и отключать их от сети (вилкой), если в течение длительного времени ими не пользуются.
Рекомендуется также отключать чувствительные электронные приборы во время грозы, бури и ливня, а также при перебоях в электроснабжении.
С помощью специальных предохранителей обеспечить защиту чувствительных электронных приборов от скачков напряжения. Такие предохранители устанавливаются меду розеткой и штепсельной вилкой чувствительного электронного прибора. Их можно установить самостоятельно.
Приобретать чувствительные электронные приборы со специальной защитой. По данному вопросу вы можете проконсультироваться не только с продавцом, но и с техниками и другими специалистами из специализированных мастерских.

Применение всех вышеперечисленных средств не гарантирует полную защиту чувствительных электронных приборов, но существенно снижает вероятность их повреждения.

Нетривиально занятие, скажу я вам. :) Дабы облегчить усвоение материала я вводил ряд упрощений. Совершенно бредовых и антинаучных, но более менее наглядно показывающих суть процесса. Методика «канализационной электрики» успешно показала себя в полевых испытаниях, а посему будет использована и тут. Хочу лишь обратить внимание, что это всего лишь наглядное упрощение, справедливое для общего случая и конкретного момента, чтобы понять суть и к реальной физике процесса не имеющая практически никакого отношения. Зачем оно тогда? А чтобы проще запомнить, что к чему и не путать напряжение и ток и понимать как на все это влияет сопротивление, а то я от студентов такого наслушался…

Ток, напряжение, сопротивление.

Если сравнить электроцепь с канализацией, то источник питания это сливной бачок, текущая вода – ток, давление воды-напряжение, а несущееся по трубам говнище – полезная нагрузка. Чем выше сливной бачок, тем больше потенциальная энергия воды, находящейся в нем, и тем сильней будет напор-ток проходящий по трубам, а значит больше дерьма-нагрузки он сможет смыть.
Кроме текущего дерьма, потоку препятствует трение о стенки труб, образуя потери. Чем толще трубы тем меньше потери (гы гы гы теперь ты помнимаешь почему аудиофилы для своей мощной акустики берут провода потолще;)).
Итак, подведем итог. Электроцепь содержит источник, создающий между своими полюсами разность потенциалов – напряжение. Под действием этого напряжения ток устремляется через нагрузку туда, где потенциал ниже. Движению тока препятствует сопротивление, образуемое из полезной нагрузки и потерь. В результате напряжение-давление ослабевает тем сильней, чем больше сопротивление. Ну, а теперь, положим нашу канализацию в математическое русло.

Закон Ома

Для примера просчитаем простейшую цепь, состоящую из трех сопротивлений и одного источника. Схему я буду рисовать не так как принято в учебниках по ТОЭ, а ближе к реальной принципиальной схеме, где принимают точку нулевого потенциала – корпус, обычно равный минусу питания, а плюс считают точкой с потенциалом равным напряжению питания. Для начала считаем, что напряжение и сопротивления у нас известны, а значит нам нужно найти ток. Сложим все сопротивления (о правилах сложения сопротивлений читай на врезке), дабы получить общую нагрузку и поделим напряжение на получившийся результат – ток найден! А теперь посмотрим как распределяется напряжение на каждом из сопротивлений. Выворачиваем закон Ома наизнанку и начинаем вычислять. U=I*R поскольку ток в цепи един для всех последовательных сопротивлений, то он будет постоянен, а вот сопротивления разные. Итогом стало то, что Uисточника = U1 +U2 +U3 . Исходя из этого принципа можно, например, соединить последовательно 50 лампочек рассчитанных на 4.5 вольта и спокойно запитать от розетки в 220 вольт – ни одна лампочка не перегорит. А что будет если в эту связку, в серединку, всандалить одно здоровенное сопротивление, скажем на КилоОм, а два других взять поменьше – на один Ом? А из расчетов станет ясно, что почти все напряжение выпадет на этом большом сопротивлении.

Закон Кирхгоффа.

Согласно этому закону сумма токов вошедших и вышедших из узела равна нулю, причем токи втекающие в узел принято обозначать с плюсом, а вытекающие с минусом. По аналогии с нашей канализацией – вода из одной мощной трубы разбегается по кучи мелких. Данное правило позволяет вычислять примерный потребляемый ток, что иногда бывает просто необходимо при расчете принципиальных схем.

Мощность и потери
Мощность которая расходуется в цепи выражается как произведение напряжения на ток.
Р = U * I
Потому чем больше ток или напряжение, тем больше мощность. Т.к. резистор (или провода) не выполняет какой либо полезной нагрузки, то мощность, выпадающая него это потери в чистом виде. В данном случае мощность можно через закон ома выразить так:
P= R * I 2

Как видишь, увеличение сопротивления вызывает увеличение мощности расходующееся на потери, а если возрастает ток, то потери увеличиваются в квадратичной зависимости. В резисторе вся моща уходит в нагрев. По этой же причине, кстати, аккумуляторы нагреваются при работе – у них тоже есть внутреннее сопротивление, на котором и происходит рассеяние части энергии.
Вот для чего аудиофилы для своих сверхмощных звуковых систем берут толстенные медные провода с минимальным сопротивлением, чтобы снизить потери мощности, так как токи там бывают немалые.

Есть закон полного тока в цепи, правда на практике мне он никогда не пригождался, но знать его не помешает, поэтому утяни из сети какой либо учебник по ТОЭ (теоретические основы электротехники) лучше для средних учебных заведений, там все гораздо проще и понятней описано – без ухода в высшую математику.

Выбор редакции
Всем огромный привет! Спешу опять порадовать вас самым популярным августовским блюдом. Угадайте с трех раз! О чем я хочу написать? Каких...

Екатерина II – великая российская императрица, царствование которой стало самым значимым периодом в русской истории. Эпоха Екатерины...

Как выяснила «Газета.Ru», эксперты, расследующие катастрофу Robinson R-66 на Телецком озере в Республике Алтай, склоняются к версии, что...

Во время германской компании на Востоке, Messershmitt BF 109 был основным самолетом истребительной авиации Люфтваффе. Несмотря на их...
Гороскоп совместимости: цветы по знакам зодиака лев - самое полное описание, только доказанные теории, основанные на астрологических...
Символ рока и судьбы, предотвратить которую невозможно. Руна Наутиз означает вынужденные обстоятельства, ограничения, несвободу выбора....
Как приготовить лаваш в кляре Сегодня мы предлагаем вам приготовить блюдо, способное стать и замечательной закуской на праздничном столе,...
Чудеса Пресвятой Богородицы в наши дни не перестают удивлять и радовать христиан, а ее помощь приходит всем христианам, которые молятся...
Варенье из крыжовника в мультиварке готовить довольно легко, оно отличается от обычного лакомства, сваренного на плите, лишь своей...